{"title":"The impact of water storage capacity on plant dynamics in arid environments: A stoichiometric modeling approach","authors":"Cuihua Wang , Sanling Yuan , Hao Wang","doi":"10.1016/j.mbs.2024.109147","DOIUrl":null,"url":null,"abstract":"<div><p>Plants in arid environments have evolved many strategies to resist drought. Among them, the developed water storage tissue is an essential characteristic of xerophytes. To clarify the role of water storage capacity in plant performance, we originally formulate a stoichiometric model to describe the interaction between plants and water with explicit water storage. Via an ecological reproductive index, we explore the effects of precipitation and water storage capacity on plant dynamics. The model possesses saddle–node bifurcation and forward or backward bifurcation, and the latter may lead to the emergence of alternative stable states between a stable survival state and a stable extinction state. Numerical simulations illustrate the persistence and resilience of plants regulated by soil conditions, precipitation and water storage capacity. Our findings contribute to the botanical theory in the perspectives of environmental change and plant water storage traits.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"369 ","pages":"Article 109147"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000075","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants in arid environments have evolved many strategies to resist drought. Among them, the developed water storage tissue is an essential characteristic of xerophytes. To clarify the role of water storage capacity in plant performance, we originally formulate a stoichiometric model to describe the interaction between plants and water with explicit water storage. Via an ecological reproductive index, we explore the effects of precipitation and water storage capacity on plant dynamics. The model possesses saddle–node bifurcation and forward or backward bifurcation, and the latter may lead to the emergence of alternative stable states between a stable survival state and a stable extinction state. Numerical simulations illustrate the persistence and resilience of plants regulated by soil conditions, precipitation and water storage capacity. Our findings contribute to the botanical theory in the perspectives of environmental change and plant water storage traits.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.