{"title":"Development of real-time navigation system for laparoscopic hepatectomy using magnetic micro sensor.","authors":"Tsuyoshi Igami, Yuichiro Hayashi, Yukihiro Yokyama, Kensaku Mori, Tomoki Ebata","doi":"10.1080/13645706.2023.2301594","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We report a new real-time navigation system for laparoscopic hepatectomy (LH), which resembles a car navigation system.</p><p><strong>Material and methods: </strong>Virtual three-dimensional liver and body images were reconstructed using the \"New-VES\" system, which worked as roadmap during surgery. Several points of the patient's body were registered in virtual images using a magnetic position sensor (MPS). A magnetic transmitter, corresponding to an artificial satellite, was placed about 40 cm above the patient's body. Another MPS, corresponding to a GPS antenna, was fixed on the handling part of the laparoscope. Fiducial registration error (FRE, an error between real and virtual lengths) was utilized to evaluate the accuracy of this system.</p><p><strong>Results: </strong>Twenty-one patients underwent LH with this system. Mean FRE of the initial five patients was 17.7 mm. Mean FRE of eight patients in whom MDCT was taken using radiological markers for registration of body parts as first improvement, was reduced to 10.2 mm (<i>p</i> = .014). As second improvement, a new MPS as an intraoperative body position sensor was fixed on the right-sided chest wall for automatic correction of postural gap. The preoperative and postoperative mean FREs of 8 patients with both improvements were 11.1 mm and 10.1 mm (<i>p</i> = .250).</p><p><strong>Conclusions: </strong>Our system may provide a promising option that virtually guides LH.</p>","PeriodicalId":18537,"journal":{"name":"Minimally Invasive Therapy & Allied Technologies","volume":" ","pages":"129-139"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minimally Invasive Therapy & Allied Technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13645706.2023.2301594","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: We report a new real-time navigation system for laparoscopic hepatectomy (LH), which resembles a car navigation system.
Material and methods: Virtual three-dimensional liver and body images were reconstructed using the "New-VES" system, which worked as roadmap during surgery. Several points of the patient's body were registered in virtual images using a magnetic position sensor (MPS). A magnetic transmitter, corresponding to an artificial satellite, was placed about 40 cm above the patient's body. Another MPS, corresponding to a GPS antenna, was fixed on the handling part of the laparoscope. Fiducial registration error (FRE, an error between real and virtual lengths) was utilized to evaluate the accuracy of this system.
Results: Twenty-one patients underwent LH with this system. Mean FRE of the initial five patients was 17.7 mm. Mean FRE of eight patients in whom MDCT was taken using radiological markers for registration of body parts as first improvement, was reduced to 10.2 mm (p = .014). As second improvement, a new MPS as an intraoperative body position sensor was fixed on the right-sided chest wall for automatic correction of postural gap. The preoperative and postoperative mean FREs of 8 patients with both improvements were 11.1 mm and 10.1 mm (p = .250).
Conclusions: Our system may provide a promising option that virtually guides LH.
期刊介绍:
Minimally Invasive Therapy and Allied Technologies (MITAT) is an international forum for endoscopic surgeons, interventional radiologists and industrial instrument manufacturers. It is the official journal of the Society for Medical Innovation and Technology (SMIT) whose membership includes representatives from a broad spectrum of medical specialities, instrument manufacturing and research. The journal brings the latest developments and innovations in minimally invasive therapy to its readers. What makes Minimally Invasive Therapy and Allied Technologies unique is that we publish one or two special issues each year, which are devoted to a specific theme. Key topics covered by the journal include: interventional radiology, endoscopic surgery, imaging technology, manipulators and robotics for surgery and education and training for MIS.