{"title":"Methylglyoxal metabolism is altered during defence response in pigeonpea (<i>Cajanus cajan</i> (L.) Millsp.) against the spotted pod borer (<i>Maruca vitrata</i>).","authors":"Sukhmanpreet Kaur, Satvir Kaur Grewal, Gaurav Kumar Taggar, Rachana D Bhardwaj","doi":"10.1071/FP23155","DOIUrl":null,"url":null,"abstract":"<p><p>Pigeonpea (Cajanus cajan ) production can be affected by the spotted pod borer (Maruca vitrata ). Here, we identified biochemical changes in plant parts of pigeonpea after M. vitrata infestation. Two pigeonpea genotypes (AL 1747, moderately resistant; and MN 1, susceptible) were compared for glyoxalase and non-glyoxalase enzyme systems responsible for methylglyoxal (MG) detoxification, γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST) and glutathione content in leaves, flowers and pods under control and insect-infested conditions. MN 1 had major damage due to M. vitrata infestation compared to AL 1747. Lower accumulation of MG in AL 1747 was due to higher activities of enzymes of GSH-dependent (glyoxylase I, glyoxylase II), GSH-independent (glyoxalase III) pathway, and enzyme of non-glyoxalase pathway (methylglyoxal reductase, MGR), which convert MG to lactate. Decreased glyoxylase enzymes and MGR activities in MN 1 resulted in higher accumulation of MG. Higher lactate dehydrogenase (LDH) activity in AL 1747 indicates utilisation of MG detoxification pathway. Higher glutathione content in AL 1747 genotype might be responsible for efficient working of MG detoxification pathway under insect infestation. Higher activity of γ-GCS in AL 1747 maintains the glutathione pool, necessary for the functioning of glyoxylase pathway to carry out the detoxification of MG. Higher activities of GST and GPX in AL 1747 might be responsible for detoxification of toxic products that accumulates following insect infestation, and elevated activities of glyoxylase and non-glyoxylase enzyme systems in AL 1747 after infestation might be responsible for reducing reactive cabanoyl stress. Our investigation will help the future development of resistant cultivars.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23155","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pigeonpea (Cajanus cajan ) production can be affected by the spotted pod borer (Maruca vitrata ). Here, we identified biochemical changes in plant parts of pigeonpea after M. vitrata infestation. Two pigeonpea genotypes (AL 1747, moderately resistant; and MN 1, susceptible) were compared for glyoxalase and non-glyoxalase enzyme systems responsible for methylglyoxal (MG) detoxification, γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST) and glutathione content in leaves, flowers and pods under control and insect-infested conditions. MN 1 had major damage due to M. vitrata infestation compared to AL 1747. Lower accumulation of MG in AL 1747 was due to higher activities of enzymes of GSH-dependent (glyoxylase I, glyoxylase II), GSH-independent (glyoxalase III) pathway, and enzyme of non-glyoxalase pathway (methylglyoxal reductase, MGR), which convert MG to lactate. Decreased glyoxylase enzymes and MGR activities in MN 1 resulted in higher accumulation of MG. Higher lactate dehydrogenase (LDH) activity in AL 1747 indicates utilisation of MG detoxification pathway. Higher glutathione content in AL 1747 genotype might be responsible for efficient working of MG detoxification pathway under insect infestation. Higher activity of γ-GCS in AL 1747 maintains the glutathione pool, necessary for the functioning of glyoxylase pathway to carry out the detoxification of MG. Higher activities of GST and GPX in AL 1747 might be responsible for detoxification of toxic products that accumulates following insect infestation, and elevated activities of glyoxylase and non-glyoxylase enzyme systems in AL 1747 after infestation might be responsible for reducing reactive cabanoyl stress. Our investigation will help the future development of resistant cultivars.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.