{"title":"On representations of the Helmholtz Green's function","authors":"Gregory Beylkin","doi":"10.1016/j.acha.2024.101633","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the free space Helmholtz Green's function and split it into the sum of oscillatory and non-oscillatory (singular) components. The goal is to separate the impact of the singularity of the real part at the origin from the oscillatory behavior controlled by the wave number <em>k</em>. The oscillatory component can be chosen to have any finite number of continuous derivatives at the origin and can be applied to a function in the Fourier space in <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>log</mi><mo></mo><mi>k</mi><mo>)</mo></mrow></math></span><span><span> operations. The non-oscillatory component has a multiresolution representation via a </span>linear combination of Gaussians and is applied efficiently in space.</span></p><p>Since the Helmholtz Green's function can be viewed as a point source, this partitioning can be interpreted as a splitting into propagating and evanescent components. We show that the non-oscillatory component is significant only in the vicinity of the source at distances <span><math><mi>O</mi><mrow><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>k</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>k</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>log</mi></mrow><mrow><mn>10</mn></mrow></msub><mo></mo><mi>k</mi><mo>)</mo></mrow></math></span>, for some constants <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, whereas the propagating component can be observed at large distances.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101633"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000101","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the free space Helmholtz Green's function and split it into the sum of oscillatory and non-oscillatory (singular) components. The goal is to separate the impact of the singularity of the real part at the origin from the oscillatory behavior controlled by the wave number k. The oscillatory component can be chosen to have any finite number of continuous derivatives at the origin and can be applied to a function in the Fourier space in operations. The non-oscillatory component has a multiresolution representation via a linear combination of Gaussians and is applied efficiently in space.
Since the Helmholtz Green's function can be viewed as a point source, this partitioning can be interpreted as a splitting into propagating and evanescent components. We show that the non-oscillatory component is significant only in the vicinity of the source at distances , for some constants , , whereas the propagating component can be observed at large distances.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.