Asmaa A Hassan, Sherein S Abdelgayed, Somaya Z Mansour
{"title":"Liver and ovarian toxicities boosted by bisphenol and gamma radiation in female albino rats.","authors":"Asmaa A Hassan, Sherein S Abdelgayed, Somaya Z Mansour","doi":"10.1177/09603271231219264","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol A (BPA), a carbon-based synthetic polymer compound, was newly classified as an environmental toxicant and an endocrine-disrupting chemical leading to abnormalities in cell proliferation, apoptosis, or migration that contributes to cancer development and progression. This study aims to evaluate the effect of the elevation of γ- radiation dose and BPA on the liver and ovaries of female rats. In this study, eighty female albino rats (130-150 g) were used in this work. Rats in this experiment received BPA in ethanol (50 mg/kg b. wt.) for 30 days, day after day, and in the irradiated groups, animals were administered BPA and then exposed to γ- radiation in doses (2, 4, and 6 Gy) one shot dose. Several members of the cytochrome family were examined. Exposure to γ-radiation and BPA showed an increase in cytochrome P450 and b5 fold change. Further, BPA and γ-radiation activate α and β estrogen receptors and also downregulate aromatase (CYT19) fold change. The current results also revealed that BPA and/or γ-radiation regulate the protein expression of the PI3K/Akt signaling pathway. The steroidogenic acute regulatory protein (StAR) appeared to be targeted by BPA and γ-radiation and its relative expression was elevated significantly by raising the γ-radiation dose. In conclusion, exposure to BPA, an endocrine-disrupting chemical, leads to marked toxicity. Additionally, toxicity is heightened by increasing the γ-radiation dose, either alone or in combination with BPA.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271231219264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bisphenol A (BPA), a carbon-based synthetic polymer compound, was newly classified as an environmental toxicant and an endocrine-disrupting chemical leading to abnormalities in cell proliferation, apoptosis, or migration that contributes to cancer development and progression. This study aims to evaluate the effect of the elevation of γ- radiation dose and BPA on the liver and ovaries of female rats. In this study, eighty female albino rats (130-150 g) were used in this work. Rats in this experiment received BPA in ethanol (50 mg/kg b. wt.) for 30 days, day after day, and in the irradiated groups, animals were administered BPA and then exposed to γ- radiation in doses (2, 4, and 6 Gy) one shot dose. Several members of the cytochrome family were examined. Exposure to γ-radiation and BPA showed an increase in cytochrome P450 and b5 fold change. Further, BPA and γ-radiation activate α and β estrogen receptors and also downregulate aromatase (CYT19) fold change. The current results also revealed that BPA and/or γ-radiation regulate the protein expression of the PI3K/Akt signaling pathway. The steroidogenic acute regulatory protein (StAR) appeared to be targeted by BPA and γ-radiation and its relative expression was elevated significantly by raising the γ-radiation dose. In conclusion, exposure to BPA, an endocrine-disrupting chemical, leads to marked toxicity. Additionally, toxicity is heightened by increasing the γ-radiation dose, either alone or in combination with BPA.