{"title":"Evaluation of tumor-educated platelet long non-coding RNAs (lncRNAs) as potential diagnostic biomarkers for colorectal cancer.","authors":"Seidamir Pasha Tabaeian, Zahra Shokati Eshkiki, Fatemeh Dana, Farimah Fayyaz, Mansoureh Baniasadi, Shahram Agah, Mohsen Masoodi, Elahe Safari, Meghdad Sedaghat, Paria Abedini, Abolfazl Akbari","doi":"10.4103/jcrt.jcrt_1212_22","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cancer-derived circulating components are increasingly considered as candidate sources for non-invasive diagnostic biomarkers. This study aimed to investigate the expression of tumor-educated platelet (TEP) long non-coding RNAs (lncRNAs) in colorectal cancer (CRC) patients and determine whether it could be served as a potential tool for CRC diagnosis.</p><p><strong>Materials and methods: </strong>Relative quantitative real-time PCR (qRT-PCR) was used to detect the expression levels of three cancer-related platelet-derived lncRNAs CCAT1, HOTTIP, and XIST in 75 CRC patients and 42 healthy controls. Quantitative data were analyzed by SPSS (IBM Corp., Armonk, NY, USA) for comparison of cancer and non-cancer individuals. The receiver operating characteristic (ROC) curve analysis was further performed to assess the diagnostic values of lncRNAs within the CRC patients.</p><p><strong>Results: </strong>The expression levels of lncRNAs colon cancer associated transcript 1 (CCAT1) ( P = 0.006) and HOXA transcript at the distal tip (HOTTIP) ( P = 0.049), but not X-inactive specific transcript (XIST) ( P = 0.12), were significantly upregulated in CRC patients compared to healthy individuals. However, there were no significant correlations between platelet lncRNAs and clinicopathological characteristics, including sex, age, tumor location, differentiation, and size (all at P > 0.05). The area under the ROC curve (AUC) of the lncRNA CCAT1 was 0.61 (sensitivity, 71%; specificity, 50%).</p><p><strong>Conclusion: </strong>TEP lncRNA CCAT1 is detectable in the circulation of CRC patients and could be considered as a potential diagnostic biomarker.</p>","PeriodicalId":94070,"journal":{"name":"Journal of cancer research and therapeutics","volume":" ","pages":"1453-1458"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cancer research and therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jcrt.jcrt_1212_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Cancer-derived circulating components are increasingly considered as candidate sources for non-invasive diagnostic biomarkers. This study aimed to investigate the expression of tumor-educated platelet (TEP) long non-coding RNAs (lncRNAs) in colorectal cancer (CRC) patients and determine whether it could be served as a potential tool for CRC diagnosis.
Materials and methods: Relative quantitative real-time PCR (qRT-PCR) was used to detect the expression levels of three cancer-related platelet-derived lncRNAs CCAT1, HOTTIP, and XIST in 75 CRC patients and 42 healthy controls. Quantitative data were analyzed by SPSS (IBM Corp., Armonk, NY, USA) for comparison of cancer and non-cancer individuals. The receiver operating characteristic (ROC) curve analysis was further performed to assess the diagnostic values of lncRNAs within the CRC patients.
Results: The expression levels of lncRNAs colon cancer associated transcript 1 (CCAT1) ( P = 0.006) and HOXA transcript at the distal tip (HOTTIP) ( P = 0.049), but not X-inactive specific transcript (XIST) ( P = 0.12), were significantly upregulated in CRC patients compared to healthy individuals. However, there were no significant correlations between platelet lncRNAs and clinicopathological characteristics, including sex, age, tumor location, differentiation, and size (all at P > 0.05). The area under the ROC curve (AUC) of the lncRNA CCAT1 was 0.61 (sensitivity, 71%; specificity, 50%).
Conclusion: TEP lncRNA CCAT1 is detectable in the circulation of CRC patients and could be considered as a potential diagnostic biomarker.