From caged compounds with isolated U atoms to frustrated magnets with 2- or 3-atom clusters: a review of Al-rich uranium aluminides with transition metals.
{"title":"From caged compounds with isolated U atoms to frustrated magnets with 2- or 3-atom clusters: a review of Al-rich uranium aluminides with transition metals.","authors":"Mathieu Pasturel, Adam Pikul","doi":"10.1088/1361-6633/ad218d","DOIUrl":null,"url":null,"abstract":"<p><p>Crystal structures and physical properties of four families of Al-rich ternary uranium compounds with transition metals (<i>TE</i>) are reviewed, namely U<i>TE</i><sub>2</sub>Al<sub>20</sub>, U<i>TE</i><sub>2</sub>Al<sub>10</sub>, U<sub>6</sub><i>TE</i><sub>4</sub>Al<sub>43</sub>, and U<sub>3</sub><i>TE</i><sub>4</sub>Al<sub>12</sub>. The compounds can be described as consisting of 1 (isolated), 2 (dumbbells) or 3 (triangles) uranium atom clusters, surrounded (1-2-20, 1-2-10 and 6-4-43) or not (3-4-12) by large cages, which strongly influence their magnetic and related properties. Indeed, the ground states of the described systems evolve from Curie-like paramagnetism in the case of the phases with well-isolated, single U-atoms, to complex magnetic order or possible frustrated magnetism in the case of the systems with uranium triangles forming a breathing kagome lattice. We argue that the four families of uranium aluminides described in this review provide a unique opportunity to study magnetic interactions between U magnetic moments while gradually increasing the number of their nearest magnetic neighbors, and may also be helpful in understanding the fundamental origin of magnetic freezing phenomena.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ad218d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Crystal structures and physical properties of four families of Al-rich ternary uranium compounds with transition metals (TE) are reviewed, namely UTE2Al20, UTE2Al10, U6TE4Al43, and U3TE4Al12. The compounds can be described as consisting of 1 (isolated), 2 (dumbbells) or 3 (triangles) uranium atom clusters, surrounded (1-2-20, 1-2-10 and 6-4-43) or not (3-4-12) by large cages, which strongly influence their magnetic and related properties. Indeed, the ground states of the described systems evolve from Curie-like paramagnetism in the case of the phases with well-isolated, single U-atoms, to complex magnetic order or possible frustrated magnetism in the case of the systems with uranium triangles forming a breathing kagome lattice. We argue that the four families of uranium aluminides described in this review provide a unique opportunity to study magnetic interactions between U magnetic moments while gradually increasing the number of their nearest magnetic neighbors, and may also be helpful in understanding the fundamental origin of magnetic freezing phenomena.