Role of organic and inorganic amendments on physiological attributes of germinating pea seedlings under arsenic stress.

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Marina Rafiq, Muhammad Shahid, Irshad Bibi, Sana Khalid, Tasveer Zahra Tariq, Abdullah A Al-Kahtani, Zeid A ALOthman, Behzad Murtaza, Nabeel Khan Niazi
{"title":"Role of organic and inorganic amendments on physiological attributes of germinating pea seedlings under arsenic stress.","authors":"Marina Rafiq, Muhammad Shahid, Irshad Bibi, Sana Khalid, Tasveer Zahra Tariq, Abdullah A Al-Kahtani, Zeid A ALOthman, Behzad Murtaza, Nabeel Khan Niazi","doi":"10.1080/15226514.2024.2305684","DOIUrl":null,"url":null,"abstract":"<p><p>There are scarce data regarding the effects of soil amendments on biophysicochemical responses of plants at the early stages of growth/germination. This study critically compares the effects of ethylene-diamine-tetra-acetic-acid (EDTA) and calcium (Ca) on biophysicochemical responses of germinating pea seedlings under varied arsenic levels (As, 25, 125, 250 µM). Arsenic alone enhanced hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) level in pea roots (176%) and shoot (89%), which significantly reduced seed germination percentage, pigment contents, and growth parameters. Presence of EDTA and Ca in growth culture minimized the toxic effects of As on pea seedlings, EDTA being more pertinent than Ca. Both the amendments decreased H<sub>2</sub>O<sub>2</sub> levels in pea tissues (16% in shoot and 13% in roots by EDTA, and 7% by Ca in shoot), and maintained seed germination, pigment contents, and growth parameters of peas close to those of the control treatment. The effects of all As-treatments were more pronounced in the pea roots than in the shoot. The presence of organic and inorganic amendments can play a useful role in alleviating As toxicity at the early stages of pea growth. The scarcity of data demands comparing plant biophysicochemical responses at different stages of plant growth (germinating vs mature) in future studies.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1243-1252"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2305684","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

There are scarce data regarding the effects of soil amendments on biophysicochemical responses of plants at the early stages of growth/germination. This study critically compares the effects of ethylene-diamine-tetra-acetic-acid (EDTA) and calcium (Ca) on biophysicochemical responses of germinating pea seedlings under varied arsenic levels (As, 25, 125, 250 µM). Arsenic alone enhanced hydrogen peroxide (H2O2) level in pea roots (176%) and shoot (89%), which significantly reduced seed germination percentage, pigment contents, and growth parameters. Presence of EDTA and Ca in growth culture minimized the toxic effects of As on pea seedlings, EDTA being more pertinent than Ca. Both the amendments decreased H2O2 levels in pea tissues (16% in shoot and 13% in roots by EDTA, and 7% by Ca in shoot), and maintained seed germination, pigment contents, and growth parameters of peas close to those of the control treatment. The effects of all As-treatments were more pronounced in the pea roots than in the shoot. The presence of organic and inorganic amendments can play a useful role in alleviating As toxicity at the early stages of pea growth. The scarcity of data demands comparing plant biophysicochemical responses at different stages of plant growth (germinating vs mature) in future studies.

有机和无机添加剂对砷胁迫下豌豆发芽幼苗生理特性的影响
有关土壤改良剂对植物在生长/发芽早期阶段的生物物理化学反应的影响的数据很少。本研究比较了乙二胺四乙酸(EDTA)和钙(Ca)在不同砷水平(As、25、125、250 µM)下对豌豆发芽幼苗的生物物理化学反应的影响。单独使用砷会提高豌豆根部(176%)和芽部(89%)的过氧化氢(H2O2)水平,从而显著降低种子发芽率、色素含量和生长参数。在生长培养基中加入乙二胺四乙酸(EDTA)和钙,可将砷对豌豆幼苗的毒性影响降至最低,其中乙二胺四乙酸(EDTA)比钙更有针对性。这两种添加剂都降低了豌豆组织中的 H2O2 水平(EDTA 在芽中降低了 16%,在根中降低了 13%,Ca 在芽中降低了 7%),并使豌豆的种子发芽率、色素含量和生长参数与对照处理接近。所有砷处理对豌豆根部的影响都比对芽的影响更明显。在豌豆生长的早期阶段,有机和无机添加剂的存在可在减轻砷毒性方面发挥有益的作用。由于数据匮乏,今后的研究需要比较植物在不同生长阶段(发芽与成熟)的生物物理化学反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信