Azam Bagheri Pebdeni, Mohammad N Al-Baiati, Morteza Hosseini
{"title":"New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of <i>E. coli</i> in water.","authors":"Azam Bagheri Pebdeni, Mohammad N Al-Baiati, Morteza Hosseini","doi":"10.3762/bjnano.15.9","DOIUrl":null,"url":null,"abstract":"<p><p>A fast and sensitive aptasensor was developed using nanoplates with peroxidase activity as a novel approach<i>. E. coli</i> detection is described using a silver/platinum nanoplate (Ag/Pt NPL) that interacts with an oligonucleotide aptamer as a bioreceptor. The size of the Ag/Pt NPLs was about 42 nm according to the FE-SEM images. The EDS result indicates that a thin layer of Pt ions was coated on the surface of the Ag NPLs. This nanobiosensor has the ability to specifically bind to <i>E. coli</i>, increasing the peroxidase activity of the apt-Ag/Pt NPL. Finally, the blue color of the solution in the contaminated water samples was increased in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate and H<sub>2</sub>O<sub>2</sub>. The assay can be completed in 30 min and the presence of <i>E. coli</i> levels can be distinguished with the naked eye. The absorbance at 652 nm is proportional to pathogen concentration from 10 to 10<sup>8</sup> CFU·mL<sup>-1</sup>, with a detection limit of 10 CFU·mL<sup>-1</sup>. The percent recovery for the water samples spiked with <i>E. coli</i> is 95%. The developed assay should serve as a general platform for detecting other pathogenic bacteria which affect water and food quality. The proposed <i>E. coli</i> detection strategy has appealing characteristics such as high sensitivity, simple operation, short testing time, and low cost.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"95-103"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.15.9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A fast and sensitive aptasensor was developed using nanoplates with peroxidase activity as a novel approach. E. coli detection is described using a silver/platinum nanoplate (Ag/Pt NPL) that interacts with an oligonucleotide aptamer as a bioreceptor. The size of the Ag/Pt NPLs was about 42 nm according to the FE-SEM images. The EDS result indicates that a thin layer of Pt ions was coated on the surface of the Ag NPLs. This nanobiosensor has the ability to specifically bind to E. coli, increasing the peroxidase activity of the apt-Ag/Pt NPL. Finally, the blue color of the solution in the contaminated water samples was increased in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate and H2O2. The assay can be completed in 30 min and the presence of E. coli levels can be distinguished with the naked eye. The absorbance at 652 nm is proportional to pathogen concentration from 10 to 108 CFU·mL-1, with a detection limit of 10 CFU·mL-1. The percent recovery for the water samples spiked with E. coli is 95%. The developed assay should serve as a general platform for detecting other pathogenic bacteria which affect water and food quality. The proposed E. coli detection strategy has appealing characteristics such as high sensitivity, simple operation, short testing time, and low cost.
期刊介绍:
The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology.
The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.