ESG Factors and Firms' Credit Risk

Laura Bonacorsi , Vittoria Cerasi , Paola Galfrascoli , Matteo Manera
{"title":"ESG Factors and Firms' Credit Risk","authors":"Laura Bonacorsi ,&nbsp;Vittoria Cerasi ,&nbsp;Paola Galfrascoli ,&nbsp;Matteo Manera","doi":"10.1016/j.jclimf.2024.100032","DOIUrl":null,"url":null,"abstract":"<div><p>We explore the relationship between credit risk and Environmental, Social, and Governance (ESG) dimensions using Supervised Machine Learning (SML) techniques on a cross-section of European listed companies. Our proxy for credit risk is the z-score originally proposed by Altman (1968). As potential explanatory variables, we consider an extensive number of raw ESG factors sourced from the rating provider MSCI. In the first stage, we demonstrate, using different SML methods such as LASSO and Random Forest, that a selection of ESG factors, in addition to the usual accounting ratios, helps explaining a firm’s probability of default. In the second stage, we measure the impact of the selected variables on the risk of default. Our approach provides a novel perspective to understand which ESG factors may be associated with the credit score of individual companies.</p></div>","PeriodicalId":100763,"journal":{"name":"Journal of Climate Finance","volume":"6 ","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949728024000026/pdfft?md5=8da1b87d01ef3d9333e772a47b6b3493&pid=1-s2.0-S2949728024000026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate Finance","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949728024000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the relationship between credit risk and Environmental, Social, and Governance (ESG) dimensions using Supervised Machine Learning (SML) techniques on a cross-section of European listed companies. Our proxy for credit risk is the z-score originally proposed by Altman (1968). As potential explanatory variables, we consider an extensive number of raw ESG factors sourced from the rating provider MSCI. In the first stage, we demonstrate, using different SML methods such as LASSO and Random Forest, that a selection of ESG factors, in addition to the usual accounting ratios, helps explaining a firm’s probability of default. In the second stage, we measure the impact of the selected variables on the risk of default. Our approach provides a novel perspective to understand which ESG factors may be associated with the credit score of individual companies.

环境、社会和治理因素与企业的信用风险
我们利用监督机器学习(SML)技术,在欧洲上市公司的横截面上探讨了信用风险与环境、社会和治理(ESG)维度之间的关系。我们采用 Altman(1968 年)最初提出的 Z 分数作为信用风险的替代指标。作为潜在的解释变量,我们考虑了大量来自评级提供商 MSCI 的原始 ESG 因素。在第一阶段,我们使用 LASSO 和随机森林等不同的 SML 方法证明,除了常用的会计比率外,ESG 因素的选择有助于解释公司的违约概率。在第二阶段,我们衡量了所选变量对违约风险的影响。我们的方法提供了一个新的视角,让我们了解哪些环境、社会和公司治理因素可能与单个公司的信用评分相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信