Shan Lin , Zenglong Liang , Miao Dong , Hongwei Guo , Hong Zheng
{"title":"Imbalanced rock burst assessment using variational autoencoder-enhanced gradient boosting algorithms and explainability","authors":"Shan Lin , Zenglong Liang , Miao Dong , Hongwei Guo , Hong Zheng","doi":"10.1016/j.undsp.2023.11.008","DOIUrl":null,"url":null,"abstract":"<div><p>We conducted a study to evaluate the potential and robustness of gradient boosting algorithms in rock burst assessment, established a variational autoencoder (VAE) to address the imbalance rock burst dataset, and proposed a multilevel explainable artificial intelligence (XAI) tailored for tree-based ensemble learning. We collected 537 data from real-world rock burst records and selected four critical features contributing to rock burst occurrences. Initially, we employed data visualization to gain insight into the data's structure and performed correlation analysis to explore the data distribution and feature relationships. Then, we set up a VAE model to generate samples for the minority class due to the imbalanced class distribution. In conjunction with the VAE, we compared and evaluated six state-of-the-art ensemble models, including gradient boosting algorithms and the classical logistic regression model, for rock burst prediction. The results indicated that gradient boosting algorithms outperformed the classical single models, and the VAE-classifier outperformed the original classifier, with the VAE-NGBoost model yielding the most favorable results. Compared to other resampling methods combined with NGBoost for imbalanced datasets, such as synthetic minority oversampling technique (SMOTE), SMOTE-edited nearest neighbours (SMOTE-ENN), and SMOTE-tomek links (SMOTE-Tomek), the VAE-NGBoost model yielded the best performance. Finally, we developed a multilevel XAI model using feature sensitivity analysis, Tree Shapley Additive exPlanations (Tree SHAP), and Anchor to provide an in-depth exploration of the decision-making mechanics of VAE-NGBoost, further enhancing the accountability of tree-based ensemble models in predicting rock burst occurrences.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"17 ","pages":"Pages 226-245"},"PeriodicalIF":8.2000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000060/pdfft?md5=f371e39062d1a6f6632474feee358962&pid=1-s2.0-S2467967424000060-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000060","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
We conducted a study to evaluate the potential and robustness of gradient boosting algorithms in rock burst assessment, established a variational autoencoder (VAE) to address the imbalance rock burst dataset, and proposed a multilevel explainable artificial intelligence (XAI) tailored for tree-based ensemble learning. We collected 537 data from real-world rock burst records and selected four critical features contributing to rock burst occurrences. Initially, we employed data visualization to gain insight into the data's structure and performed correlation analysis to explore the data distribution and feature relationships. Then, we set up a VAE model to generate samples for the minority class due to the imbalanced class distribution. In conjunction with the VAE, we compared and evaluated six state-of-the-art ensemble models, including gradient boosting algorithms and the classical logistic regression model, for rock burst prediction. The results indicated that gradient boosting algorithms outperformed the classical single models, and the VAE-classifier outperformed the original classifier, with the VAE-NGBoost model yielding the most favorable results. Compared to other resampling methods combined with NGBoost for imbalanced datasets, such as synthetic minority oversampling technique (SMOTE), SMOTE-edited nearest neighbours (SMOTE-ENN), and SMOTE-tomek links (SMOTE-Tomek), the VAE-NGBoost model yielded the best performance. Finally, we developed a multilevel XAI model using feature sensitivity analysis, Tree Shapley Additive exPlanations (Tree SHAP), and Anchor to provide an in-depth exploration of the decision-making mechanics of VAE-NGBoost, further enhancing the accountability of tree-based ensemble models in predicting rock burst occurrences.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.