Excitation time imaging condition reverse time migration based on physics-informed neural network traveltime calculation with wavefield decomposition using optical flow vector
Jian Li, Guoning Du, Dewen Qin, Wensun Yin, Jun Tan, Zhaolun Liu, Peng Song
{"title":"Excitation time imaging condition reverse time migration based on physics-informed neural network traveltime calculation with wavefield decomposition using optical flow vector","authors":"Jian Li, Guoning Du, Dewen Qin, Wensun Yin, Jun Tan, Zhaolun Liu, Peng Song","doi":"10.1093/jge/gxad106","DOIUrl":null,"url":null,"abstract":"\n Although the excitation-time imaging condition offers a lower memory consumption and higher computational efficiency compared to cross-correlation imaging condition, it has not been widely used in industrial applications because of the accuracy problem of traveltime calculation and the influence of low-wave-number noise. In this paper, we introduce the physics-informed neural network (PINN) algorithm to achieve a high-precision traveltime calculation of the source forward wavefield. Subsequently, we introduce a technique for high-precision wavefield decomposition of the reverse-time wavefield via the optical flow vector, enabling us to realize a correlation-weighted stacking imaging of each wavefield. Model experiments and real data processing show that the proposed traveltime calculation algorithm based on PINN offers high accuracy and good applicability in the excitation time reverse-time migration imaging of complex models, and correlation-weighted stacking imaging based on optical flow vector-based wavefield separation can significantly suppress the noise with low wavenumber and achieve high-precision imaging of complex models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"68 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad106","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although the excitation-time imaging condition offers a lower memory consumption and higher computational efficiency compared to cross-correlation imaging condition, it has not been widely used in industrial applications because of the accuracy problem of traveltime calculation and the influence of low-wave-number noise. In this paper, we introduce the physics-informed neural network (PINN) algorithm to achieve a high-precision traveltime calculation of the source forward wavefield. Subsequently, we introduce a technique for high-precision wavefield decomposition of the reverse-time wavefield via the optical flow vector, enabling us to realize a correlation-weighted stacking imaging of each wavefield. Model experiments and real data processing show that the proposed traveltime calculation algorithm based on PINN offers high accuracy and good applicability in the excitation time reverse-time migration imaging of complex models, and correlation-weighted stacking imaging based on optical flow vector-based wavefield separation can significantly suppress the noise with low wavenumber and achieve high-precision imaging of complex models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.