Imaging of conducting materials via the Kernel Method

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Tamburrino, Vincenzo Mottola
{"title":"Imaging of conducting materials via the Kernel Method","authors":"A. Tamburrino, Vincenzo Mottola","doi":"10.3233/jae-230167","DOIUrl":null,"url":null,"abstract":"In this work, we present a new non-iterative imaging method for Electrical Resistance Tomography (ERT). The problem in ERT is retrieving the spatial behaviour of the electrical conductivity by means of boundary measurements in steady-state conditions. Specifically, the interest is focused on the inverse obstacle problem, that consists in reconstructing the shape, position and dimension of one or more anomalies embedded in a known background. The proposed method, called Kernel Method, is based on the idea that if there exists a current density Jn that applied at the boundary ∂𝛺 of the domain under investigation 𝛺 produces the same scalar potential (on ∂𝛺), with and without anomalies, then the power density corresponding to Jn, evaluated on a configuration without anomalies, is vanishing in the region occupied by the latter. The proposed method has a very low computational cost. Indeed, the evaluation of the desired current density Jn on ∂𝛺 requires a negligible computational effort, and the reconstructions require only one forward problem.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230167","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a new non-iterative imaging method for Electrical Resistance Tomography (ERT). The problem in ERT is retrieving the spatial behaviour of the electrical conductivity by means of boundary measurements in steady-state conditions. Specifically, the interest is focused on the inverse obstacle problem, that consists in reconstructing the shape, position and dimension of one or more anomalies embedded in a known background. The proposed method, called Kernel Method, is based on the idea that if there exists a current density Jn that applied at the boundary ∂𝛺 of the domain under investigation 𝛺 produces the same scalar potential (on ∂𝛺), with and without anomalies, then the power density corresponding to Jn, evaluated on a configuration without anomalies, is vanishing in the region occupied by the latter. The proposed method has a very low computational cost. Indeed, the evaluation of the desired current density Jn on ∂𝛺 requires a negligible computational effort, and the reconstructions require only one forward problem.
通过内核法对导电材料成像
在这项工作中,我们为电阻断层扫描(ERT)提出了一种新的非迭代成像方法。ERT 的问题是通过稳态条件下的边界测量来检索电导率的空间特性。具体来说,问题主要集中在反障碍问题上,即重建嵌入已知背景中的一个或多个异常点的形状、位置和尺寸。所提出的方法被称为 "核方法"(Kernel Method),其基本思想是:如果存在一个电流密度 Jn,该密度施加在被研究域 𝛺 的边界 ∂𝛺 上,在有异常点和无异常点的情况下产生相同的标量电势(在 ∂ᵯ上),那么在无异常点的配置上评估的与 Jn 相对应的功率密度在后者占据的区域内消失。所提出的方法计算成本非常低。事实上,在 ∂𝛺 上评估所需的电流密度 Jn 所需的计算量可以忽略不计,而重构只需要一个前向问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信