Micromechanical properties of micro- and nanocrystalline CVD diamond thin films with gradient microstructures and stresses

M. Meindlhumer, T. Ziegelwanger, J. Grau, H. Sternschulte, M. Sztucki, D. Steinmüller-Nethl, J. Keckes
{"title":"Micromechanical properties of micro- and nanocrystalline CVD diamond thin films with gradient microstructures and stresses","authors":"M. Meindlhumer, T. Ziegelwanger, J. Grau, H. Sternschulte, M. Sztucki, D. Steinmüller-Nethl, J. Keckes","doi":"10.1116/6.0003235","DOIUrl":null,"url":null,"abstract":"Chemical vapor deposition produced diamonds attract considerable scientific and industrial interest due to their exceptional mechanical and functional properties. Here, hot filament (HF) chemical vapor deposition was used to synthesize two diamond thin films with different cross-sectional microstructure and residual stresses. Structural characterization by scanning electron microscopy, Raman spectroscopy, and cross-sectional synchrotron x-ray nanodiffraction revealed different diamond morphologies. While the microcrystalline diamond film exhibits pronounced microstructural gradients expressed by gradually increasing (i) intensities of the 111 Debye-Scherrer rings, (ii) ⟨110⟩ fiber texture sharpness, (iii) grain size, and (iv) slightly oscillating residual stress at the level of −0.5 GPa, the nanocrystalline diamond film showed no pronounced cross-sectional variation of microstructure above the nucleation zone of ∼0.5 μm and a steady stress level of 0.25 GPa. In situ micromechanical cantilever bending tests revealed highly different mechanical properties of the two films. In detail, Young's modulus of 830 ± 53 and 459 ± 53 GPa, fracture stress of 12.4 ± 0.8 and 7.8 ± 1.0 GPa, and fracture toughness values of 6.9 ± 0.4 and 3.6 ± 0.3 MPa⋅m½ were evaluated for the micro- and nanocrystalline diamond films, respectively. In summary, this study provides valuable insights into the microstructure-residual stress correlation in micro- and nanocrystalline diamond films, especially illuminating their influence on micromechanical properties.","PeriodicalId":509398,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"47 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical vapor deposition produced diamonds attract considerable scientific and industrial interest due to their exceptional mechanical and functional properties. Here, hot filament (HF) chemical vapor deposition was used to synthesize two diamond thin films with different cross-sectional microstructure and residual stresses. Structural characterization by scanning electron microscopy, Raman spectroscopy, and cross-sectional synchrotron x-ray nanodiffraction revealed different diamond morphologies. While the microcrystalline diamond film exhibits pronounced microstructural gradients expressed by gradually increasing (i) intensities of the 111 Debye-Scherrer rings, (ii) ⟨110⟩ fiber texture sharpness, (iii) grain size, and (iv) slightly oscillating residual stress at the level of −0.5 GPa, the nanocrystalline diamond film showed no pronounced cross-sectional variation of microstructure above the nucleation zone of ∼0.5 μm and a steady stress level of 0.25 GPa. In situ micromechanical cantilever bending tests revealed highly different mechanical properties of the two films. In detail, Young's modulus of 830 ± 53 and 459 ± 53 GPa, fracture stress of 12.4 ± 0.8 and 7.8 ± 1.0 GPa, and fracture toughness values of 6.9 ± 0.4 and 3.6 ± 0.3 MPa⋅m½ were evaluated for the micro- and nanocrystalline diamond films, respectively. In summary, this study provides valuable insights into the microstructure-residual stress correlation in micro- and nanocrystalline diamond films, especially illuminating their influence on micromechanical properties.
具有梯度微结构和应力的微晶和纳米晶 CVD 金刚石薄膜的微机械特性
化学气相沉积法生产的金刚石因其卓越的机械和功能特性而备受科学界和工业界的关注。本文采用热丝(HF)化学气相沉积法合成了两种具有不同横截面微观结构和残余应力的金刚石薄膜。通过扫描电子显微镜、拉曼光谱和横截面同步 X 射线纳米衍射进行的结构表征揭示了不同的金刚石形态。微晶金刚石薄膜表现出明显的微观结构梯度,具体表现为:(i) 111 Debye-Scherrer 环的强度逐渐增加;(ii) ⟨110⟩ 纤维纹理锐度逐渐增加;(iii) 晶粒大小逐渐增加;(iv) 残余应力在 -0.5 GPa,纳米结晶金刚石薄膜在成核区 ∼0.5 μm 和稳定应力水平 0.25 GPa 以上没有显示出明显的横截面微观结构变化。原位微机械悬臂弯曲测试表明,两种薄膜的机械性能存在很大差异。具体而言,微晶和纳米金刚石薄膜的杨氏模量分别为 830 ± 53 和 459 ± 53 GPa,断裂应力分别为 12.4 ± 0.8 和 7.8 ± 1.0 GPa,断裂韧性分别为 6.9 ± 0.4 和 3.6 ± 0.3 MPa-m½。总之,这项研究为微晶和纳米晶金刚石薄膜的微观结构-残余应力相关性提供了宝贵的见解,特别是阐明了它们对微观机械性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信