{"title":"Hidden Reward: Affect and Its Prediction Errors as Windows Into Subjective Value","authors":"Marius C. Vollberg, David Sander","doi":"10.1177/09637214231217678","DOIUrl":null,"url":null,"abstract":"Scientists increasingly apply concepts from reinforcement learning to affect, but which concepts should apply? And what can their application reveal that we cannot know from directly observable states? An important reinforcement learning concept is the difference between reward expectations and outcomes. Such reward prediction errors have become foundational to research on adaptive behavior in humans, animals, and machines. Owing to historical focus on animal models and observable reward (e.g., food or money), however, relatively little attention has been paid to the fact that humans can additionally report correspondingly expected and experienced affect (e.g., feelings). Reflecting a broader “rise of affectivism,” attention has started to shift, revealing explanatory power of expected and experienced feelings—including prediction errors—above and beyond observable reward. We propose that applying concepts from reinforcement learning to affect holds promise for elucidating subjective value. Simultaneously, we urge scientists to test—rather than inherit—concepts that may not apply directly.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/09637214231217678","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Scientists increasingly apply concepts from reinforcement learning to affect, but which concepts should apply? And what can their application reveal that we cannot know from directly observable states? An important reinforcement learning concept is the difference between reward expectations and outcomes. Such reward prediction errors have become foundational to research on adaptive behavior in humans, animals, and machines. Owing to historical focus on animal models and observable reward (e.g., food or money), however, relatively little attention has been paid to the fact that humans can additionally report correspondingly expected and experienced affect (e.g., feelings). Reflecting a broader “rise of affectivism,” attention has started to shift, revealing explanatory power of expected and experienced feelings—including prediction errors—above and beyond observable reward. We propose that applying concepts from reinforcement learning to affect holds promise for elucidating subjective value. Simultaneously, we urge scientists to test—rather than inherit—concepts that may not apply directly.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.