Feng-Zhu Wang, Ying Bao, Zhenxiang Li, Xiangyu Xiong, Jian-Feng Li
{"title":"A dual-function selection system enables positive selection of multigene CRISPR mutants and negative selection of Cas9-free progeny in Arabidopsis","authors":"Feng-Zhu Wang, Ying Bao, Zhenxiang Li, Xiangyu Xiong, Jian-Feng Li","doi":"10.1007/s42994-023-00132-6","DOIUrl":null,"url":null,"abstract":"<div><p>The CRISPR/Cas9 technology revolutionizes targeted gene knockout in diverse organisms including plants. However, screening edited alleles, particularly those with multiplex editing, from herbicide- or antibiotic-resistant transgenic plants and segregating out the <i>Cas9</i> transgene represent two laborious processes. Current solutions to facilitate these processes rely on different selection markers. Here, by taking advantage of the opposite functions of a <span>d</span>-amino acid oxidase (DAO) in detoxifying <span>d</span>-serine and in metabolizing non-toxic <span>d</span>-valine to a cytotoxic product, we develop a DAO-based selection system that simultaneously enables the enrichment of multigene edited alleles and elimination of <i>Cas9</i>-containing progeny in <i>Arabidopsis thaliana</i>. Among five DAOs tested in <i>Escherichia coli</i>, the one encoded by <i>Trigonopsis variabilis</i> (TvDAO) could confer slightly stronger <span>d</span>-serine resistance than other homologs. Transgenic expression of <i>TvDAO</i> in <i>Arabidopsis</i> allowed a clear distinction between transgenic and non-transgenic plants in both <span>d</span>-serine-conditioned positive selection and <span>d</span>-valine-conditioned negative selection. As a proof of concept, we combined CRISPR-induced single-strand annealing repair of a dead <i>TvDAO</i> with <span>d</span>-serine-based positive selection to help identify transgenic plants with multiplex editing, where <span>d</span>-serine-resistant plants exhibited considerably higher co-editing frequencies at three endogenous target genes than those selected by hygromycin. Subsequently, <span>d</span>-valine-based negative selection successfully removed <i>Cas9</i> and <i>TvDAO</i> transgenes from the survival offspring carrying inherited mutations. Collectively, this work provides a novel strategy to ease CRISPR mutant identification and <i>Cas9</i> transgene elimination using a single selection marker, which promises more efficient and simplified multiplex CRISPR editing in plants.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"140 - 150"},"PeriodicalIF":4.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00132-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-023-00132-6","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The CRISPR/Cas9 technology revolutionizes targeted gene knockout in diverse organisms including plants. However, screening edited alleles, particularly those with multiplex editing, from herbicide- or antibiotic-resistant transgenic plants and segregating out the Cas9 transgene represent two laborious processes. Current solutions to facilitate these processes rely on different selection markers. Here, by taking advantage of the opposite functions of a d-amino acid oxidase (DAO) in detoxifying d-serine and in metabolizing non-toxic d-valine to a cytotoxic product, we develop a DAO-based selection system that simultaneously enables the enrichment of multigene edited alleles and elimination of Cas9-containing progeny in Arabidopsis thaliana. Among five DAOs tested in Escherichia coli, the one encoded by Trigonopsis variabilis (TvDAO) could confer slightly stronger d-serine resistance than other homologs. Transgenic expression of TvDAO in Arabidopsis allowed a clear distinction between transgenic and non-transgenic plants in both d-serine-conditioned positive selection and d-valine-conditioned negative selection. As a proof of concept, we combined CRISPR-induced single-strand annealing repair of a dead TvDAO with d-serine-based positive selection to help identify transgenic plants with multiplex editing, where d-serine-resistant plants exhibited considerably higher co-editing frequencies at three endogenous target genes than those selected by hygromycin. Subsequently, d-valine-based negative selection successfully removed Cas9 and TvDAO transgenes from the survival offspring carrying inherited mutations. Collectively, this work provides a novel strategy to ease CRISPR mutant identification and Cas9 transgene elimination using a single selection marker, which promises more efficient and simplified multiplex CRISPR editing in plants.