Comparative analysis of the characteristics of outlet short circuit and winding insulation fault of distribution transformer and its preventive measures

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2024-01-19 DOI:10.1049/hve2.12412
Richang Xian, Yuyao Hu, Bingqian Zhang, Qingyu Rong, Rujie Zhao, Wei Wang, Yang Guo, Yunhao Li
{"title":"Comparative analysis of the characteristics of outlet short circuit and winding insulation fault of distribution transformer and its preventive measures","authors":"Richang Xian,&nbsp;Yuyao Hu,&nbsp;Bingqian Zhang,&nbsp;Qingyu Rong,&nbsp;Rujie Zhao,&nbsp;Wei Wang,&nbsp;Yang Guo,&nbsp;Yunhao Li","doi":"10.1049/hve2.12412","DOIUrl":null,"url":null,"abstract":"<p>Outlet short circuit on the low-voltage (LV) side and winding inter-turn short circuit faults are hazardous to transformer operation. To investigate the formation mechanism of winding insulation faults of distribution transformer, ANSYS Maxwell was used to build a coupled magnetic field-circuit model with the same structural dimension as the actual distribution transformer. An outlet short circuit and winding inter-turn insulation faults were set by using the voltage-controlled switch in the external circuit of the model. Subsequently, the differences in the electromagnetic characteristics and the electrodynamic force distributions of the windings under three operating conditions, namely, nominal load, three-phase outlet short circuit on the LV side and inter-turn insulation failure were studied, respectively. The results show that compared with the rated load, in the cases of outlet short circuit and inter-turn insulation faults, the amplitude of winding current increases by 20 and 50 times, the magnetic field strength grows by 20 and 17 times, and the electrodynamic force rises by 400 and 230 times, respectively. Outlet short circuit fault is more likely to cause the winding instability and deformation, and inter-turn short circuit fault can easily burn out winding insulation. Therefore, corresponding preventive measures were proposed.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 3","pages":"700-709"},"PeriodicalIF":4.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12412","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12412","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Outlet short circuit on the low-voltage (LV) side and winding inter-turn short circuit faults are hazardous to transformer operation. To investigate the formation mechanism of winding insulation faults of distribution transformer, ANSYS Maxwell was used to build a coupled magnetic field-circuit model with the same structural dimension as the actual distribution transformer. An outlet short circuit and winding inter-turn insulation faults were set by using the voltage-controlled switch in the external circuit of the model. Subsequently, the differences in the electromagnetic characteristics and the electrodynamic force distributions of the windings under three operating conditions, namely, nominal load, three-phase outlet short circuit on the LV side and inter-turn insulation failure were studied, respectively. The results show that compared with the rated load, in the cases of outlet short circuit and inter-turn insulation faults, the amplitude of winding current increases by 20 and 50 times, the magnetic field strength grows by 20 and 17 times, and the electrodynamic force rises by 400 and 230 times, respectively. Outlet short circuit fault is more likely to cause the winding instability and deformation, and inter-turn short circuit fault can easily burn out winding insulation. Therefore, corresponding preventive measures were proposed.

Abstract Image

配电变压器出线短路和绕组绝缘故障的特征对比分析及其预防措施
低压侧的出线短路和绕组匝间短路故障对变压器的运行具有危险性。为研究配电变压器绕组绝缘故障的形成机理,采用 ANSYS Maxwell 建立了与实际配电变压器结构尺寸相同的磁场-电路耦合模型。利用模型外电路中的压控开关设置了出线短路和绕组匝间绝缘故障。随后,分别研究了额定负载、低压侧三相出线短路和匝间绝缘故障三种工况下绕组电磁特性和电动势分布的差异。结果表明,与额定负载相比,在出线短路和匝间绝缘故障情况下,绕组电流幅值分别增加了 20 倍和 50 倍,磁场强度分别增加了 20 倍和 17 倍,电动势分别增加了 400 倍和 230 倍。出口短路故障更容易导致绕组失稳和变形,而匝间短路故障则容易烧毁绕组绝缘。因此,提出了相应的预防措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信