Ewa Bednarczyk, Szymon Sikora, Krzysztof Jankowski, Zuzanna Żołek-Tryznowska, Tomasz Murawski, Jakub Bańczerowski, Yanfei Lu, Cezary Senderowski
{"title":"Mathematical model of osteophyte development with the first attempt to identify a biomechanical parameter","authors":"Ewa Bednarczyk, Szymon Sikora, Krzysztof Jankowski, Zuzanna Żołek-Tryznowska, Tomasz Murawski, Jakub Bańczerowski, Yanfei Lu, Cezary Senderowski","doi":"10.1007/s00161-023-01272-2","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents research on identifying a biomechanical parameter from a theoretical model of changes during osteoarthritis. In vitro experiments were carried out on quasi-3D chondrocyte cultures seeded on corn-starch hydrogel materials and subjected to mechanical stress on a designed and constructed stand. The results were adapted to a mathematical model and calculated on a simplified two-dimensional specimen. Numerical simulations have been performed to illustrate the growth of bone spurs. The observed changes of variables which determine osteophytes are qualitative and more correlated to the real-life observations.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 3","pages":"433 - 443"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-023-01272-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01272-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents research on identifying a biomechanical parameter from a theoretical model of changes during osteoarthritis. In vitro experiments were carried out on quasi-3D chondrocyte cultures seeded on corn-starch hydrogel materials and subjected to mechanical stress on a designed and constructed stand. The results were adapted to a mathematical model and calculated on a simplified two-dimensional specimen. Numerical simulations have been performed to illustrate the growth of bone spurs. The observed changes of variables which determine osteophytes are qualitative and more correlated to the real-life observations.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.