YBX1 Underwent Phase Separation into Stress Granules Stimulated by Ionizing Radiation.

IF 2.5 3区 医学 Q2 BIOLOGY
Jiaxin Tang, Jiyuan Liu, Jing Nie, Hailong Pei, Guangming Zhou
{"title":"YBX1 Underwent Phase Separation into Stress Granules Stimulated by Ionizing Radiation.","authors":"Jiaxin Tang, Jiyuan Liu, Jing Nie, Hailong Pei, Guangming Zhou","doi":"10.1667/RADE-23-00113.1","DOIUrl":null,"url":null,"abstract":"<p><p>Stress granules (SGs) are formed through liquid-liquid phase separation (LLPS), in response to external stimuli. YBX1, an integral component of SGs, plays a crucial role in tumor progression and cellular stress response. This study aims to elucidate the mechanisms and specific biological implications of YBX1 in SG formation, along with the identification of key regions and interacting proteins. Our observations indicate that YBX1 rapidly undergoes liquid-liquid phase separation, leading to SG formation in response to 8 Gy X-ray irradiation within 1 h, with SGs reverting to their original state after 5 h. There was a potential interaction between ATXN2L and YBX1, persisting YBX1 within the SGs. Our data suggested a potential interaction between ATXN2L and YBX1, and it remained associated with YBX1 within the SGs. Furthermore, our subsequent studies demonstrate that targeting ATXN2L can diminish the recruitment of YBX1 to stress granules (SGs), consequently enhancing the radiosensitivity of HeLa cells.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-23-00113.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stress granules (SGs) are formed through liquid-liquid phase separation (LLPS), in response to external stimuli. YBX1, an integral component of SGs, plays a crucial role in tumor progression and cellular stress response. This study aims to elucidate the mechanisms and specific biological implications of YBX1 in SG formation, along with the identification of key regions and interacting proteins. Our observations indicate that YBX1 rapidly undergoes liquid-liquid phase separation, leading to SG formation in response to 8 Gy X-ray irradiation within 1 h, with SGs reverting to their original state after 5 h. There was a potential interaction between ATXN2L and YBX1, persisting YBX1 within the SGs. Our data suggested a potential interaction between ATXN2L and YBX1, and it remained associated with YBX1 within the SGs. Furthermore, our subsequent studies demonstrate that targeting ATXN2L can diminish the recruitment of YBX1 to stress granules (SGs), consequently enhancing the radiosensitivity of HeLa cells.

在电离辐射的刺激下,YBX1 发生相分离,形成应激颗粒。
应激颗粒(SGs)是在外界刺激下通过液-液相分离(LLPS)形成的。YBX1是应激颗粒不可或缺的组成部分,在肿瘤进展和细胞应激反应中起着至关重要的作用。本研究旨在阐明 YBX1 在 SG 形成过程中的作用机制和具体生物学意义,同时确定关键区域和相互作用蛋白。我们的观察结果表明,在8 Gy X射线照射下,YBX1在1小时内迅速发生液-液相分离,导致SG形成,5小时后SG恢复原状。我们的数据表明 ATXN2L 与 YBX1 之间存在潜在的相互作用,并且 ATXN2L 仍与 SG 中的 YBX1 相关联。此外,我们随后的研究表明,靶向 ATXN2L 可以减少 YBX1 在应激颗粒(SGs)中的招募,从而提高 HeLa 细胞的辐射敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信