Drosophila MIC10b can polymerize into cristae-shaping filaments.

IF 3.3 2区 生物学 Q1 BIOLOGY
Life Science Alliance Pub Date : 2024-01-22 Print Date: 2024-04-01 DOI:10.26508/lsa.202302177
Till Stephan, Stefan Stoldt, Mariam Barbot, Travis D Carney, Felix Lange, Mark Bates, Peter Bou Dib, Kaushik Inamdar, Halyna R Shcherbata, Michael Meinecke, Dietmar Riedel, Sven Dennerlein, Peter Rehling, Stefan Jakobs
{"title":"<i>Drosophila</i> MIC10b can polymerize into cristae-shaping filaments.","authors":"Till Stephan, Stefan Stoldt, Mariam Barbot, Travis D Carney, Felix Lange, Mark Bates, Peter Bou Dib, Kaushik Inamdar, Halyna R Shcherbata, Michael Meinecke, Dietmar Riedel, Sven Dennerlein, Peter Rehling, Stefan Jakobs","doi":"10.26508/lsa.202302177","DOIUrl":null,"url":null,"abstract":"<p><p>Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization. In <i>Drosophila melanogaster</i>, three MIC10-like proteins with different tissue-specific expression patterns exist. We demonstrate that CG41128/MINOS1b/DmMIC10b is the major MIC10 orthologue in flies. Its loss destabilizes MICOS, disturbs cristae architecture, and reduces the life span and fertility of flies. We show that DmMIC10b has a unique ability to polymerize into bundles of filaments, which can remodel mitochondrial crista membranes. The formation of these filaments relies on conserved glycine and cysteine residues, and can be suppressed by the co-expression of other <i>Drosophila</i> MICOS proteins. These findings provide new insights into the regulation of MICOS in flies, and suggest potential mechanisms for the maintenance of mitochondrial ultrastructure.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202302177","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization. In Drosophila melanogaster, three MIC10-like proteins with different tissue-specific expression patterns exist. We demonstrate that CG41128/MINOS1b/DmMIC10b is the major MIC10 orthologue in flies. Its loss destabilizes MICOS, disturbs cristae architecture, and reduces the life span and fertility of flies. We show that DmMIC10b has a unique ability to polymerize into bundles of filaments, which can remodel mitochondrial crista membranes. The formation of these filaments relies on conserved glycine and cysteine residues, and can be suppressed by the co-expression of other Drosophila MICOS proteins. These findings provide new insights into the regulation of MICOS in flies, and suggest potential mechanisms for the maintenance of mitochondrial ultrastructure.

果蝇的 MIC10b 可以聚合成嵴状细丝。
嵴是线粒体内膜的内陷,对细胞能量代谢至关重要。嵴的形成需要一种被称为 MICOS 的蛋白质复合物的存在,这种复合物在真核生物物种中是保守的。该复合体的亚基之一 MIC10 是一种跨膜蛋白,通过寡聚化支持嵴的形成。在黑腹果蝇中,存在三种具有不同组织特异性表达模式的 MIC10 类似蛋白。我们证明,CG41128/MINOS1b/DmMIC10b是果蝇中主要的MIC10直向同源物。它的缺失会破坏 MICOS 的稳定性,扰乱嵴结构,降低苍蝇的寿命和繁殖力。我们的研究表明,DmMIC10b 具有独特的聚合成丝束的能力,可以重塑线粒体嵴膜。这些细丝的形成依赖于保守的甘氨酸和半胱氨酸残基,并可被果蝇其他 MICOS 蛋白的共同表达所抑制。这些发现提供了关于调控果蝇 MICOS 的新见解,并提出了维持线粒体超微结构的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信