{"title":"Variability in Neural Circuit Formation.","authors":"Kevin J Mitchell","doi":"10.1101/cshperspect.a041504","DOIUrl":null,"url":null,"abstract":"<p><p>The study of neural development is usually concerned with the question of how nervous systems get put together. Variation in these processes is usually of interest as a means of revealing these normative mechanisms. However, variation itself can be an object of study and is of interest from multiple angles. First, the nature of variation in both the processes and the outcomes of neural development is relevant to our understanding of how these processes and outcomes are encoded in the genome. Second, variation in the wiring of the brain in humans may underlie variation in all kinds of psychological and behavioral traits, as well as neurodevelopmental disorders. And third, genetic variation that affects circuit development provides the raw material for evolutionary change. Here, I examine these different aspects of variation in circuit development and consider what they may tell us about these larger questions.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041504","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study of neural development is usually concerned with the question of how nervous systems get put together. Variation in these processes is usually of interest as a means of revealing these normative mechanisms. However, variation itself can be an object of study and is of interest from multiple angles. First, the nature of variation in both the processes and the outcomes of neural development is relevant to our understanding of how these processes and outcomes are encoded in the genome. Second, variation in the wiring of the brain in humans may underlie variation in all kinds of psychological and behavioral traits, as well as neurodevelopmental disorders. And third, genetic variation that affects circuit development provides the raw material for evolutionary change. Here, I examine these different aspects of variation in circuit development and consider what they may tell us about these larger questions.
期刊介绍:
Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.