Rheb1 is required for limb growth through regulating chondrogenesis in growth plate.

IF 3.2 3区 生物学 Q3 CELL BIOLOGY
Cell and Tissue Research Pub Date : 2024-03-01 Epub Date: 2024-01-23 DOI:10.1007/s00441-024-03861-2
Yuwei Zhang, Jiaxin Wen, Ruijun Lai, Jiahuan Zhang, Kai Li, Yue Zhang, Anling Liu, Xiaochun Bai
{"title":"Rheb1 is required for limb growth through regulating chondrogenesis in growth plate.","authors":"Yuwei Zhang, Jiaxin Wen, Ruijun Lai, Jiahuan Zhang, Kai Li, Yue Zhang, Anling Liu, Xiaochun Bai","doi":"10.1007/s00441-024-03861-2","DOIUrl":null,"url":null,"abstract":"<p><p>Ras homology enriched in the brain (Rheb) is well established as a critical regulator of cell proliferation and differentiation in response to growth factors and nutrients. However, the role of Rheb1 in limb development remains unknown. Here, we found that Rheb1 was dynamically expressed during the proliferation and differentiation of chondrocytes in the growth plate. Given that Prrx1<sup>+</sup> limb-bud-like mesenchymal cells are the source of limb chondrocytes and are essential for endochondral ossification, we conditionally deleted Rheb1 using Prrx1-Cre and found a limb dwarfism in Prrx1-Cre; Rheb1<sup>fl/fl</sup> mice. Normalized to growth plate height, the conditional knockout (cKO) mice exhibited a significant decrease in column count of proliferative zones which was increased in hypertrophic zones resulting in decreased growth plate size, indicating abnormal endochondral ossification. Interestingly, although Rheb1 deletion profoundly inhibited the transcription factor Sox9 in limb cartilage; levels of runx2 and collagen type 2 were both increased. These novel findings highlight the essential role of Rheb1 in limb growth and indicate a complex regulation of Rheb1 in chondrocyte proliferation and differentiation.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"261-269"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904423/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-024-03861-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ras homology enriched in the brain (Rheb) is well established as a critical regulator of cell proliferation and differentiation in response to growth factors and nutrients. However, the role of Rheb1 in limb development remains unknown. Here, we found that Rheb1 was dynamically expressed during the proliferation and differentiation of chondrocytes in the growth plate. Given that Prrx1+ limb-bud-like mesenchymal cells are the source of limb chondrocytes and are essential for endochondral ossification, we conditionally deleted Rheb1 using Prrx1-Cre and found a limb dwarfism in Prrx1-Cre; Rheb1fl/fl mice. Normalized to growth plate height, the conditional knockout (cKO) mice exhibited a significant decrease in column count of proliferative zones which was increased in hypertrophic zones resulting in decreased growth plate size, indicating abnormal endochondral ossification. Interestingly, although Rheb1 deletion profoundly inhibited the transcription factor Sox9 in limb cartilage; levels of runx2 and collagen type 2 were both increased. These novel findings highlight the essential role of Rheb1 in limb growth and indicate a complex regulation of Rheb1 in chondrocyte proliferation and differentiation.

肢体生长需要 Rheb1 通过调节生长板中的软骨形成。
脑内富集的 Ras 同源物(Rheb)已被公认为是细胞增殖和分化对生长因子和营养物质做出反应的关键调节因子。然而,Rheb1在肢体发育中的作用仍不为人知。在这里,我们发现 Rheb1 在生长板软骨细胞的增殖和分化过程中动态表达。鉴于Prrx1+肢芽样间充质细胞是肢体软骨细胞的来源,对软骨内骨化至关重要,我们利用Prrx1-Cre有条件地删除了Rheb1,发现Prrx1-Cre; Rheb1fl/fl小鼠的肢体侏儒症。以生长板高度为标准,条件性基因敲除(cKO)小鼠的增殖区柱数显著减少,而肥厚区柱数增加,导致生长板尺寸减小,表明软骨内骨化异常。有趣的是,虽然 Rheb1 基因缺失极大地抑制了四肢软骨中的转录因子 Sox9,但 runx2 和 2 型胶原蛋白的水平均有所增加。这些新发现凸显了 Rheb1 在肢体生长中的重要作用,并表明 Rheb1 在软骨细胞增殖和分化中的调控十分复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信