Min Chen, Jun Jiang, Weixin Guan, Zhijian Zhang, Xin Zhang, Wenxiong Shi, Ligang Lin, Kongyin Zhao, Guihua Yu
{"title":"Sustainable and Rapid Water Purification at the Confined Hydrogel Interface","authors":"Min Chen, Jun Jiang, Weixin Guan, Zhijian Zhang, Xin Zhang, Wenxiong Shi, Ligang Lin, Kongyin Zhao, Guihua Yu","doi":"10.1002/adma.202311416","DOIUrl":null,"url":null,"abstract":"<p>Emerging organic contaminants in water matrices have challenged ecosystems and human health safety. Persulfate-based advanced oxidation processes (PS-AOPs) have attracted much attention as they address potential water purification challenges. However, overcoming the mass transfer constraint and the catalyst's inherent site agglomeration in the heterogeneous system remains urgent. Herein, the abundant metal-anchored loading (≈6–8 g m<sup>−2</sup>) of alginate hydrogel membranes coupled with cross-flow mode as an efficient strategy for water purification applications is proposed. The organic flux of the confined hydrogel interfaces sharply enlarges with the reduction of the thickness of the boundary layer via the pressure field. The normalized property of the system displays a remarkable organic (sulfonamides) elimination rate of 4.87 × 10<sup>4</sup> mg min<sup>−1</sup> mol<sup>−1</sup>. Furthermore, due to the fast reaction time (<1 min), cross-flow mode only reaches a meager energy cost (≈2.21 Wh m<sup>−3</sup>) under the pressure drive field. It is anticipated that this finding provides insight into the novel design with ultrafast organic removal performance and low techno-economic cost (i.e., energy operation cost, material, and reagent cost) for the field of water purification under various PS-AOPs challenging scenarios.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 18","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202311416","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging organic contaminants in water matrices have challenged ecosystems and human health safety. Persulfate-based advanced oxidation processes (PS-AOPs) have attracted much attention as they address potential water purification challenges. However, overcoming the mass transfer constraint and the catalyst's inherent site agglomeration in the heterogeneous system remains urgent. Herein, the abundant metal-anchored loading (≈6–8 g m−2) of alginate hydrogel membranes coupled with cross-flow mode as an efficient strategy for water purification applications is proposed. The organic flux of the confined hydrogel interfaces sharply enlarges with the reduction of the thickness of the boundary layer via the pressure field. The normalized property of the system displays a remarkable organic (sulfonamides) elimination rate of 4.87 × 104 mg min−1 mol−1. Furthermore, due to the fast reaction time (<1 min), cross-flow mode only reaches a meager energy cost (≈2.21 Wh m−3) under the pressure drive field. It is anticipated that this finding provides insight into the novel design with ultrafast organic removal performance and low techno-economic cost (i.e., energy operation cost, material, and reagent cost) for the field of water purification under various PS-AOPs challenging scenarios.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.