Similarity analysis of bioconvection of unsteady nonhomogeneous hybrid nanofluids influenced by motile microorganisms

IF 1.8 4区 生物学 Q3 BIOPHYSICS
Samah Mohamed Mabrouk, Mustafa Inc, Ahmed Saad Rashed, Ali Akgül
{"title":"Similarity analysis of bioconvection of unsteady nonhomogeneous hybrid nanofluids influenced by motile microorganisms","authors":"Samah Mohamed Mabrouk,&nbsp;Mustafa Inc,&nbsp;Ahmed Saad Rashed,&nbsp;Ali Akgül","doi":"10.1007/s10867-023-09651-1","DOIUrl":null,"url":null,"abstract":"<div><p>Motile bacteria in hybrid nanofluids cause bioconvection. <i>Bacillus cereus</i>, <i>Pseudomonas viscosa</i>, <i>Bacillus brevis</i>, <i>Salmonella typhimurium</i>, and <i>Pseudomonas fluorescens</i> were used to evaluate their effect and dispersion in the hybrid nanofluid. Using similarity analysis, a two-phase model for mixed bioconvection magnetohydrodynamic flow was developed using hybrid nanoparticles of Al<sub>2</sub>O<sub>3</sub> and Cu (Cu-Al<sub>2</sub>O<sub>3</sub>/water). The parametric investigation, covering the magnetic parameter, permeability coefficient, nanoparticle shape factor, temperature ratio, radiation parameter, nanoparticle fraction ratio, Brownian parameter, thermophoresis parameter, motile bacteria diffusivity, chemotaxis parameter, and Nusselt, Reynold, Prandtl, Sherwood numbers, as well as the number of motile microorganisms’, showed significant outcomes. Velocity and shear stresses are sensitive to M, Pr, and <span>\\({k}_{p}^{*}\\)</span>. Magnetic, radiation, and chemotaxis factors impact bacterial density. The hybrid nanofluid velocity decreases when the magnetic parameter, <i>M</i>, Prandtl number <i>Pr</i> increases, while it increases with the increasing of porosity coefficient, <span>\\({k}_{p}^{*}\\)</span>, and the hybrid nanoparticle ratio<i> N</i><sub><i>f</i></sub>. The temperature distribution decreases with the increasing of Prandtl number and <i>N</i><sub><i>f</i></sub>. Increasing temperature differential and bacterium diffusivity increases bacterial aggregation.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-023-09651-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motile bacteria in hybrid nanofluids cause bioconvection. Bacillus cereus, Pseudomonas viscosa, Bacillus brevis, Salmonella typhimurium, and Pseudomonas fluorescens were used to evaluate their effect and dispersion in the hybrid nanofluid. Using similarity analysis, a two-phase model for mixed bioconvection magnetohydrodynamic flow was developed using hybrid nanoparticles of Al2O3 and Cu (Cu-Al2O3/water). The parametric investigation, covering the magnetic parameter, permeability coefficient, nanoparticle shape factor, temperature ratio, radiation parameter, nanoparticle fraction ratio, Brownian parameter, thermophoresis parameter, motile bacteria diffusivity, chemotaxis parameter, and Nusselt, Reynold, Prandtl, Sherwood numbers, as well as the number of motile microorganisms’, showed significant outcomes. Velocity and shear stresses are sensitive to M, Pr, and \({k}_{p}^{*}\). Magnetic, radiation, and chemotaxis factors impact bacterial density. The hybrid nanofluid velocity decreases when the magnetic parameter, M, Prandtl number Pr increases, while it increases with the increasing of porosity coefficient, \({k}_{p}^{*}\), and the hybrid nanoparticle ratio Nf. The temperature distribution decreases with the increasing of Prandtl number and Nf. Increasing temperature differential and bacterium diffusivity increases bacterial aggregation.

Abstract Image

受运动微生物影响的非稳态非均质混合纳米流体的生物对流相似性分析
混合纳米流体中的运动细菌会导致生物对流。研究人员利用蜡样芽孢杆菌、粘性假单胞菌、布氏芽孢杆菌、鼠伤寒沙门氏菌和荧光假单胞菌来评估它们在混合纳米流体中的作用和分散情况。通过相似性分析,利用 Al2O3 和 Cu 混合纳米粒子(Cu-Al2O3/水)建立了混合生物对流磁流体的两相模型。参数研究涵盖了磁参数、渗透系数、纳米颗粒形状系数、温度比、辐射参数、纳米颗粒分数比、布朗参数、热泳参数、运动细菌扩散率、趋化参数、努塞尔数、雷诺数、普朗特数、舍伍德数以及运动微生物数量,结果显示效果显著。速度和剪切应力对 M、Pr 和[公式:见正文]敏感。磁力、辐射和趋化因素对细菌密度有影响。当磁性参数 M、普朗特数 Pr 增加时,混合纳米流体的速度降低,而当孔隙度系数[计算公式:见正文]和混合纳米粒子比 Nf 增加时,混合纳米流体的速度增加。温度分布随普朗特数和 Nf 的增加而减小。温差和细菌扩散率的增加会加剧细菌聚集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信