Matthew Pedlar , Matthew J. Emery , Philip J. Warburton
{"title":"Amplifying PCR productivity and environmental sustainability through shortened cycling protocols","authors":"Matthew Pedlar , Matthew J. Emery , Philip J. Warburton","doi":"10.1016/j.biochi.2024.01.013","DOIUrl":null,"url":null,"abstract":"<div><p>Since its inception in the 1980s, advancements in PCR technology using improved thermal cyclers, engineered DNA polymerases and commercial master mixes, have led to increased PCR productivity. Despite these advancements, PCR cycling protocols have largely remained unchanged over the same period. This study aimed to systemically evaluate the effect of reduced PCR cycling parameters on amplicon production. The 1466bp fragment from the 16S rRNA gene present in low-, medium- and high-CG bacteria was amplified using three commercially available PCR master mixes. The shortest cycling parameters required to successfully amplify the 16S fragment from all bacteria and master mixes comprised 30-cycles of 5 s denaturation, 25 s annealing, and 25 s extension. While all produced an amplicon with sufficient yield to enable downstream sequence analysis, the PCRBIO Ultra Mix in conjunction with the shortened parameters was found to achieve the highest amplicon yield across low-, medium- and high CG bacteria. Comparing the run times to that of a typical 16S PCR protocol, the shortened cycling parameters reduced the program duration by 46 % and consumed 50 % less electricity, translating into increased productivity and helping to improve laboratory environmental sustainability.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"221 ","pages":"Pages 60-64"},"PeriodicalIF":3.3000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424000312/pdfft?md5=611751bcc2e6e2f9ae6166201d625756&pid=1-s2.0-S0300908424000312-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424000312","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Since its inception in the 1980s, advancements in PCR technology using improved thermal cyclers, engineered DNA polymerases and commercial master mixes, have led to increased PCR productivity. Despite these advancements, PCR cycling protocols have largely remained unchanged over the same period. This study aimed to systemically evaluate the effect of reduced PCR cycling parameters on amplicon production. The 1466bp fragment from the 16S rRNA gene present in low-, medium- and high-CG bacteria was amplified using three commercially available PCR master mixes. The shortest cycling parameters required to successfully amplify the 16S fragment from all bacteria and master mixes comprised 30-cycles of 5 s denaturation, 25 s annealing, and 25 s extension. While all produced an amplicon with sufficient yield to enable downstream sequence analysis, the PCRBIO Ultra Mix in conjunction with the shortened parameters was found to achieve the highest amplicon yield across low-, medium- and high CG bacteria. Comparing the run times to that of a typical 16S PCR protocol, the shortened cycling parameters reduced the program duration by 46 % and consumed 50 % less electricity, translating into increased productivity and helping to improve laboratory environmental sustainability.
期刊介绍:
Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English.
Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.