{"title":"Synergistic coupling of Mn-doped skeleton and Mg-toughened matrix: towards a heat-resistant Al–La–Mg–Mn alloy","authors":"Xinkui Zhang, Liejun Li, Zhi Wang, Jixiang Gao, Zhengwu Peng","doi":"10.1080/21663831.2023.2301132","DOIUrl":null,"url":null,"abstract":"Thermally stable three-dimensional (3D) skeleton coupled with the Mg-toughened matrix is employed to enhance the high-temperature strength in an Al–La–Mg–Mn alloy fabricated via laser powder bed fu...LPBF-fabricated Al–La–Mg–Mn alloy achieved outstanding high-temperature strength via boundary strengthening mechanism provide by the 3D skeleton.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"96 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2301132","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermally stable three-dimensional (3D) skeleton coupled with the Mg-toughened matrix is employed to enhance the high-temperature strength in an Al–La–Mg–Mn alloy fabricated via laser powder bed fu...LPBF-fabricated Al–La–Mg–Mn alloy achieved outstanding high-temperature strength via boundary strengthening mechanism provide by the 3D skeleton.
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.