Loewner Theory for Bernstein Functions I: Evolution Families and Differential Equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pavel Gumenyuk, Takahiro Hasebe, José-Luis Pérez
{"title":"Loewner Theory for Bernstein Functions I: Evolution Families and Differential Equations","authors":"Pavel Gumenyuk, Takahiro Hasebe, José-Luis Pérez","doi":"10.1007/s00365-023-09675-9","DOIUrl":null,"url":null,"abstract":"<p>One-parameter semigroups of holomorphic functions appear naturally in various applications of Complex Analysis, and in particular, in the theory of (temporally) homogeneous branching processes. A suitable analogue of one-parameter semigroups in the inhomogeneous setting is the notion of a (reverse) evolution family. In this paper we study evolution families formed by Bernstein functions, which play the role of Laplace exponents for inhomogeneous continuous-state branching processes. In particular, we characterize all Herglotz vector fields that generate such evolution families and give a complex-analytic proof of a qualitative description equivalent to Silverstein’s representation formula for the infinitesimal generators of one-parameter semigroups of Bernstein functions. We also establish a sufficient condition for families of Bernstein functions, satisfying the algebraic part in the definition of an evolution family, to be absolutely continuous and hence to be described as solutions to the generalized Loewner–Kufarev differential equation. Most of these results are then applied in the sequel paper [35] to study continuous-state branching processes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-023-09675-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

One-parameter semigroups of holomorphic functions appear naturally in various applications of Complex Analysis, and in particular, in the theory of (temporally) homogeneous branching processes. A suitable analogue of one-parameter semigroups in the inhomogeneous setting is the notion of a (reverse) evolution family. In this paper we study evolution families formed by Bernstein functions, which play the role of Laplace exponents for inhomogeneous continuous-state branching processes. In particular, we characterize all Herglotz vector fields that generate such evolution families and give a complex-analytic proof of a qualitative description equivalent to Silverstein’s representation formula for the infinitesimal generators of one-parameter semigroups of Bernstein functions. We also establish a sufficient condition for families of Bernstein functions, satisfying the algebraic part in the definition of an evolution family, to be absolutely continuous and hence to be described as solutions to the generalized Loewner–Kufarev differential equation. Most of these results are then applied in the sequel paper [35] to study continuous-state branching processes.

伯恩斯坦函数的卢瓦纳理论 I:演化族和微分方程
全形函数的单参数半群自然出现在复分析的各种应用中,特别是在(时间上)同质分支过程的理论中。单参数半群在非均质环境中的一个合适类比是(反向)演化族的概念。本文研究伯恩斯坦函数形成的演化族,伯恩斯坦函数在非均质连续态分支过程中扮演拉普拉斯指数的角色。特别是,我们描述了生成此类演化族的所有赫格洛茨矢量场的特征,并给出了伯恩斯坦函数单参数半群无穷小生成器的等价于西尔弗斯坦表示公式的定性描述的复解析证明。我们还为满足演化族定义中代数部分的伯恩斯坦函数族建立了一个充分条件,即伯恩斯坦函数族是绝对连续的,因此可以描述为广义卢瓦纳-库法里夫微分方程的解。这些结果中的大部分随后在续篇论文[35]中被应用于研究连续态分支过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信