Mechanistic investigation on the Hg0 elimination ability of MnOx–CeOx nanorod adsorbents: effects of Mn/Ce molar ratio

Shujie Gao, Xiaoxiang Wang, Yaolin Wang, Kai Zhu, Changxing Hu, Dong Ye
{"title":"Mechanistic investigation on the Hg0 elimination ability of MnOx–CeOx nanorod adsorbents: effects of Mn/Ce molar ratio","authors":"Shujie Gao, Xiaoxiang Wang, Yaolin Wang, Kai Zhu, Changxing Hu, Dong Ye","doi":"10.1007/s42768-023-00181-z","DOIUrl":null,"url":null,"abstract":"<p>Mercury pollution is created by coal combustion processes in multi-component systems. Adsorbent injection was identified as a potential strategy for capturing Hg<sup>0</sup> from waste gases, with adsorbents serving as the primary component. The hydrothermal approach was used to synthesize a series of MnO<sub><i>x</i></sub>–CeO<sub><i>x</i></sub> nanorod adsorbents with varying Mn/Ce molar ratios to maximize the Hg<sup>0</sup> capture capabilities. Virgin CeO<sub><i>x</i></sub> had weak Hg<sup>0</sup> elimination activity; &lt;8% Hg<sup>0</sup> removal efficiency was obtained from 150 °C to 250 °C. With the addition of MnO<sub><i>x</i></sub>, the amount of surface acid sites and the relative concentration of Mn<sup>4+</sup> increased. This ensured the sufficient adsorption and oxidation of Hg<sup>0</sup> while overcoming the limitations of restricted adsorbate-adsorbent interactions caused by the lower surface area, endowing MnO<sub><i>x</i></sub>–CeO<sub><i>x</i></sub> with increased Hg<sup>0</sup> removal capacity. When the molar ratio of Mn/Ce reached 6/4, the adsorbent’s Hg<sup>0</sup> removal efficiency remained over 92% at 150 °C and 200 °C. As the molar ratio of Mn/Ce grew, the adsorbent’s Hg<sup>0</sup> elimination capacity declined due to decreased surface area, weakened acidity, and decreased activity of Mn<sup>4+</sup>; &lt;75% Hg<sup>0</sup> removal efficiency was reached between 150 °C and 250 °C for virgin MnO<sub><i>x</i></sub>. Throughout the overall Hg<sup>0</sup> elimination reactions, Mn<sup>4+</sup> and O<sub>α</sub> were in charge of oxidizing Hg<sup>0</sup> to HgO, with Ce<sup>4+</sup> acting as a promoter to aid in the regeneration of Mn<sup>4+</sup>. Because of its limited adaptability to flue gas components, further optimization of the MnO<sub><i>x</i></sub>–CeO<sub><i>x</i></sub> nanorod adsorbent is required.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1007/s42768-023-00181-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mercury pollution is created by coal combustion processes in multi-component systems. Adsorbent injection was identified as a potential strategy for capturing Hg0 from waste gases, with adsorbents serving as the primary component. The hydrothermal approach was used to synthesize a series of MnOx–CeOx nanorod adsorbents with varying Mn/Ce molar ratios to maximize the Hg0 capture capabilities. Virgin CeOx had weak Hg0 elimination activity; <8% Hg0 removal efficiency was obtained from 150 °C to 250 °C. With the addition of MnOx, the amount of surface acid sites and the relative concentration of Mn4+ increased. This ensured the sufficient adsorption and oxidation of Hg0 while overcoming the limitations of restricted adsorbate-adsorbent interactions caused by the lower surface area, endowing MnOx–CeOx with increased Hg0 removal capacity. When the molar ratio of Mn/Ce reached 6/4, the adsorbent’s Hg0 removal efficiency remained over 92% at 150 °C and 200 °C. As the molar ratio of Mn/Ce grew, the adsorbent’s Hg0 elimination capacity declined due to decreased surface area, weakened acidity, and decreased activity of Mn4+; <75% Hg0 removal efficiency was reached between 150 °C and 250 °C for virgin MnOx. Throughout the overall Hg0 elimination reactions, Mn4+ and Oα were in charge of oxidizing Hg0 to HgO, with Ce4+ acting as a promoter to aid in the regeneration of Mn4+. Because of its limited adaptability to flue gas components, further optimization of the MnOx–CeOx nanorod adsorbent is required.

Graphical abstract

Abstract Image

MnOx-CeOx 纳米棒吸附剂消除 Hg0 能力的机理研究:Mn/Ce 摩尔比的影响
汞污染是由多组分系统中的燃煤过程造成的。吸附剂注入被认为是一种从废气中捕获 Hg0 的潜在策略,吸附剂是其中的主要成分。研究人员采用水热法合成了一系列具有不同 Mn/Ce 摩尔比的 MnOx-CeOx 纳米棒吸附剂,以最大限度地提高捕获 Hg0 的能力。原始 CeOx 的除汞活性较弱;在 150 °C 至 250 °C 的温度范围内,除汞效率为 8%。随着 MnOx 的加入,表面酸性位点的数量和 Mn4+ 的相对浓度都有所增加。这保证了 MnOx-CeOx 对 Hg0 的充分吸附和氧化,同时克服了因表面积较小而导致的吸附剂与吸附剂之间相互作用受限的问题,从而提高了 MnOx-CeOx 对 Hg0 的去除能力。当 Mn/Ce 的摩尔比达到 6/4 时,吸附剂在 150 °C 和 200 °C 下的 Hg0 去除率保持在 92% 以上。随着 Mn/Ce 摩尔比的增加,由于表面积减小、酸性减弱和 Mn4+ 活性降低,吸附剂的 Hg0 消除能力下降;原始 MnOx 的 Hg0 消除效率在 150 °C 至 250 °C 之间达到 75%。在整个 Hg0 消除反应中,Mn4+ 和 Oα 负责将 Hg0 氧化为 HgO,Ce4+ 则作为促进剂帮助 Mn4+ 的再生。由于 MnOx-CeOx 纳米棒吸附剂对烟气成分的适应性有限,因此还需要进一步优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信