Rapid and real-time detection of municipal sludge moisture content based on microwave reflection principle

Yan Zhang, Yanhong Jiao, Jun Li, Long Deng, Binqi Rao, Hao Xu, Peng Xu, Lijiang Hu, Chunping Li
{"title":"Rapid and real-time detection of municipal sludge moisture content based on microwave reflection principle","authors":"Yan Zhang,&nbsp;Yanhong Jiao,&nbsp;Jun Li,&nbsp;Long Deng,&nbsp;Binqi Rao,&nbsp;Hao Xu,&nbsp;Peng Xu,&nbsp;Lijiang Hu,&nbsp;Chunping Li","doi":"10.1007/s42768-023-00179-7","DOIUrl":null,"url":null,"abstract":"<div><p>The moisture content (MC) of municipal sludge is the key factor affecting sludge treatment and disposal technologies, while the vast majority of existing measurement methods are off-line and time-consuming. To realize rapid online detection for the MC of sludge, a detection method based on the microwave reflection principle is proposed: experiments are carried out and the MC computation model of the sludge is derived using the resonant frequency and the permittivity (<span>\\(\\varepsilon^{\\prime}\\)</span>). The results reveal that the detection accuracy of granular sludge with a thickness of 10 mm is higher. The theoretical model between the MC and the real part of <span>\\(\\varepsilon^{\\prime}\\)</span> is developed, and the relationship between the resonant frequency and <span>\\(\\varepsilon^{\\prime}\\)</span> is expressed by a cubic polynomial. The average error and the root mean square error (RMSE) of sludge are 2.06% and 2.49%, respectively. The prediction model for the MC of sludge is also given, and the determination coefficient and RMSE are 0.981 and 2.06%, respectively.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"259 - 269"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-023-00179-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The moisture content (MC) of municipal sludge is the key factor affecting sludge treatment and disposal technologies, while the vast majority of existing measurement methods are off-line and time-consuming. To realize rapid online detection for the MC of sludge, a detection method based on the microwave reflection principle is proposed: experiments are carried out and the MC computation model of the sludge is derived using the resonant frequency and the permittivity (\(\varepsilon^{\prime}\)). The results reveal that the detection accuracy of granular sludge with a thickness of 10 mm is higher. The theoretical model between the MC and the real part of \(\varepsilon^{\prime}\) is developed, and the relationship between the resonant frequency and \(\varepsilon^{\prime}\) is expressed by a cubic polynomial. The average error and the root mean square error (RMSE) of sludge are 2.06% and 2.49%, respectively. The prediction model for the MC of sludge is also given, and the determination coefficient and RMSE are 0.981 and 2.06%, respectively.

Graphical abstract

Abstract Image

基于微波反射原理的市政污泥含水率快速实时检测
市政污泥的含水率(MC)是影响污泥处理和处置技术的关键因素,而现有的测量方法绝大多数都是离线测量,耗时较长。为了实现污泥含水率的快速在线检测,本文提出了一种基于微波反射原理的检测方法:通过实验,利用共振频率和介电常数((\(\varepsilon^{\prime}\))推导出污泥的含水率计算模型。结果表明,厚度为 10 毫米的颗粒状污泥的检测精度更高。建立了 MC 与 \(\varepsilon^{prime}\)实部之间的理论模型,并用三次多项式表示了共振频率与 \(\varepsilon^{prime}\)之间的关系。污泥的平均误差和均方根误差(RMSE)分别为 2.06% 和 2.49%。同时给出了污泥 MC 的预测模型,其判定系数和均方根误差分别为 0.981% 和 2.06%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信