Thomas Aronsson, Katharina Jenderny, Gauthier Lanot
{"title":"A maximum likelihood bunching estimator of the elasticity of taxable income","authors":"Thomas Aronsson, Katharina Jenderny, Gauthier Lanot","doi":"10.1002/jae.3015","DOIUrl":null,"url":null,"abstract":"<p>This paper develops a maximum likelihood (ML) bunching estimator of the elasticity of taxable income (ETI). Our structural approach provides a natural framework to simultaneously account for unobserved preference heterogeneity and optimization errors and for measuring their relative importance. We characterize the conditions under which the parameters of the model are identified and show that the ML estimator performs well in terms of bias and precision. The paper also contains an empirical application using Swedish data, showing that both the ETI and the standard deviation of the optimization friction are precisely estimated, albeit relatively small.</p>","PeriodicalId":48363,"journal":{"name":"Journal of Applied Econometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jae.3015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Econometrics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jae.3015","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops a maximum likelihood (ML) bunching estimator of the elasticity of taxable income (ETI). Our structural approach provides a natural framework to simultaneously account for unobserved preference heterogeneity and optimization errors and for measuring their relative importance. We characterize the conditions under which the parameters of the model are identified and show that the ML estimator performs well in terms of bias and precision. The paper also contains an empirical application using Swedish data, showing that both the ETI and the standard deviation of the optimization friction are precisely estimated, albeit relatively small.
本文开发了应税收入弹性(ETI)的最大似然(ML)分组估计方法。我们的结构方法提供了一个自然框架,可同时考虑未观察到的偏好异质性和优化误差,并衡量它们的相对重要性。我们描述了确定模型参数的条件,并表明 ML 估计器在偏差和精度方面表现良好。本文还包含一个使用瑞典数据的实证应用,表明 ETI 和优化摩擦的标准偏差都得到了精确估计,尽管相对较小。
期刊介绍:
The Journal of Applied Econometrics is an international journal published bi-monthly, plus 1 additional issue (total 7 issues). It aims to publish articles of high quality dealing with the application of existing as well as new econometric techniques to a wide variety of problems in economics and related subjects, covering topics in measurement, estimation, testing, forecasting, and policy analysis. The emphasis is on the careful and rigorous application of econometric techniques and the appropriate interpretation of the results. The economic content of the articles is stressed. A special feature of the Journal is its emphasis on the replicability of results by other researchers. To achieve this aim, authors are expected to make available a complete set of the data used as well as any specialised computer programs employed through a readily accessible medium, preferably in a machine-readable form. The use of microcomputers in applied research and transferability of data is emphasised. The Journal also features occasional sections of short papers re-evaluating previously published papers. The intention of the Journal of Applied Econometrics is to provide an outlet for innovative, quantitative research in economics which cuts across areas of specialisation, involves transferable techniques, and is easily replicable by other researchers. Contributions that introduce statistical methods that are applicable to a variety of economic problems are actively encouraged. The Journal also aims to publish review and survey articles that make recent developments in the field of theoretical and applied econometrics more readily accessible to applied economists in general.