The macroeconomy as a random forest

IF 2.3 3区 经济学 Q2 ECONOMICS
Philippe Goulet Coulombe
{"title":"The macroeconomy as a random forest","authors":"Philippe Goulet Coulombe","doi":"10.1002/jae.3030","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>I develop the <i>macroeconomic random forest</i> (MRF), an algorithm adapting the canonical machine learning (ML) tool, to flexibly model evolving parameters in a linear macro equation. Its main output, <i>generalized</i> time-varying parameters (GTVPs), is a versatile device nesting many popular nonlinearities (threshold/switching, smooth transition, and structural breaks/change) and allowing for sophisticated new ones. The approach delivers clear forecasting gains over numerous alternatives, predicts the 2008 drastic rise in unemployment, and performs well for inflation. Unlike most ML-based methods, MRF is directly interpretable—via its GTVPs. For instance, the successful unemployment forecast is due to the influence of forward-looking variables (e.g., term spreads and housing starts) nearly doubling before every recession. Interestingly, the Phillips curve has indeed flattened, <i>and</i> its might is highly cyclical.</p>\n </div>","PeriodicalId":48363,"journal":{"name":"Journal of Applied Econometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Econometrics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jae.3030","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

I develop the macroeconomic random forest (MRF), an algorithm adapting the canonical machine learning (ML) tool, to flexibly model evolving parameters in a linear macro equation. Its main output, generalized time-varying parameters (GTVPs), is a versatile device nesting many popular nonlinearities (threshold/switching, smooth transition, and structural breaks/change) and allowing for sophisticated new ones. The approach delivers clear forecasting gains over numerous alternatives, predicts the 2008 drastic rise in unemployment, and performs well for inflation. Unlike most ML-based methods, MRF is directly interpretable—via its GTVPs. For instance, the successful unemployment forecast is due to the influence of forward-looking variables (e.g., term spreads and housing starts) nearly doubling before every recession. Interestingly, the Phillips curve has indeed flattened, and its might is highly cyclical.

作为随机森林的宏观经济
我开发了宏观经济随机森林(MRF),这是一种适应典型机器学习(ML)工具的算法,可灵活建模线性宏观方程中不断变化的参数。它的主要输出--广义时变参数(GTVPs)--是一个多功能工具,嵌套了许多常用的非线性因素(阈值/转换、平稳过渡和结构断裂/变化),并允许复杂的新因素。与众多替代方法相比,该方法具有明显的预测优势,可以预测 2008 年失业率的急剧上升,并在通货膨胀方面表现出色。与大多数基于 ML 的方法不同,MRF 可通过其 GTVPs 直接进行解释。例如,成功预测失业率的原因是前瞻性变量(如期限利差和房屋开工率)的影响在每次经济衰退前几乎翻倍。有趣的是,菲利普斯曲线确实变平了,而且其可能具有很强的周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
63
期刊介绍: The Journal of Applied Econometrics is an international journal published bi-monthly, plus 1 additional issue (total 7 issues). It aims to publish articles of high quality dealing with the application of existing as well as new econometric techniques to a wide variety of problems in economics and related subjects, covering topics in measurement, estimation, testing, forecasting, and policy analysis. The emphasis is on the careful and rigorous application of econometric techniques and the appropriate interpretation of the results. The economic content of the articles is stressed. A special feature of the Journal is its emphasis on the replicability of results by other researchers. To achieve this aim, authors are expected to make available a complete set of the data used as well as any specialised computer programs employed through a readily accessible medium, preferably in a machine-readable form. The use of microcomputers in applied research and transferability of data is emphasised. The Journal also features occasional sections of short papers re-evaluating previously published papers. The intention of the Journal of Applied Econometrics is to provide an outlet for innovative, quantitative research in economics which cuts across areas of specialisation, involves transferable techniques, and is easily replicable by other researchers. Contributions that introduce statistical methods that are applicable to a variety of economic problems are actively encouraged. The Journal also aims to publish review and survey articles that make recent developments in the field of theoretical and applied econometrics more readily accessible to applied economists in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信