Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaoran Kong, Yatong Zhou, Zhe Li, Shaohai Wang
{"title":"Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments","authors":"Xiaoran Kong, Yatong Zhou, Zhe Li, Shaohai Wang","doi":"10.3389/fnbot.2023.1302898","DOIUrl":null,"url":null,"abstract":"<p>Target assignment and path planning are crucial for the cooperativity of multiple unmanned aerial vehicles (UAV) systems. However, it is a challenge considering the dynamics of environments and the partial observability of UAVs. In this article, the problem of multi-UAV target assignment and path planning is formulated as a partially observable Markov decision process (POMDP), and a novel deep reinforcement learning (DRL)-based algorithm is proposed to address it. Specifically, a target assignment network is introduced into the twin-delayed deep deterministic policy gradient (TD3) algorithm to solve the target assignment problem and path planning problem simultaneously. The target assignment network executes target assignment for each step of UAVs, while the TD3 guides UAVs to plan paths for this step based on the assignment result and provides training labels for the optimization of the target assignment network. Experimental results demonstrate that the proposed approach can ensure an optimal complete target allocation and achieve a collision-free path for each UAV in three-dimensional (3D) dynamic multiple-obstacle environments, and present a superior performance in target completion and a better adaptability to complex environments compared with existing methods.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"8 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2023.1302898","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Target assignment and path planning are crucial for the cooperativity of multiple unmanned aerial vehicles (UAV) systems. However, it is a challenge considering the dynamics of environments and the partial observability of UAVs. In this article, the problem of multi-UAV target assignment and path planning is formulated as a partially observable Markov decision process (POMDP), and a novel deep reinforcement learning (DRL)-based algorithm is proposed to address it. Specifically, a target assignment network is introduced into the twin-delayed deep deterministic policy gradient (TD3) algorithm to solve the target assignment problem and path planning problem simultaneously. The target assignment network executes target assignment for each step of UAVs, while the TD3 guides UAVs to plan paths for this step based on the assignment result and provides training labels for the optimization of the target assignment network. Experimental results demonstrate that the proposed approach can ensure an optimal complete target allocation and achieve a collision-free path for each UAV in three-dimensional (3D) dynamic multiple-obstacle environments, and present a superior performance in target completion and a better adaptability to complex environments compared with existing methods.

动态多障碍环境中基于深度强化学习的多无人机同步目标分配和路径规划
目标分配和路径规划对于多个无人飞行器(UAV)系统的协同工作至关重要。然而,考虑到环境的动态性和无人飞行器的部分可观测性,这是一个挑战。本文将多无人机目标分配和路径规划问题表述为部分可观测马尔可夫决策过程(POMDP),并提出了一种基于深度强化学习(DRL)的新型算法来解决该问题。具体来说,在双延迟深度确定性策略梯度(TD3)算法中引入了目标分配网络,以同时解决目标分配问题和路径规划问题。目标分配网络为无人机的每一步执行目标分配,而 TD3 则根据分配结果引导无人机规划这一步的路径,并为目标分配网络的优化提供训练标签。实验结果表明,在三维(3D)动态多障碍物环境中,所提出的方法能确保每个无人机获得最佳的完整目标分配并实现无碰撞路径,与现有方法相比,在完成目标方面性能更优,对复杂环境的适应性更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信