Delivery Systems for Plasma-reactive Species and their Applications in the Field of Biomedicine.

Esmaeil Biazar, Farzaneh Aavani, Reza Zeinali, Bahareh Kheilnezhad, Kiana Taheri, Zahra Yahyaei
{"title":"Delivery Systems for Plasma-reactive Species and their Applications in the Field of Biomedicine.","authors":"Esmaeil Biazar, Farzaneh Aavani, Reza Zeinali, Bahareh Kheilnezhad, Kiana Taheri, Zahra Yahyaei","doi":"10.2174/0115672018268207231124014915","DOIUrl":null,"url":null,"abstract":"<p><p>Cold atmospheric plasma (CAP) is an ionized matter with potential applications in various medical fields, ranging from wound healing and disinfection to cancer treatment. CAP's clinical usefulness stems from its ability to act as an adjustable source of reactive oxygen and nitrogen species (RONS), which are known to function as pleiotropic signaling agents within cells. Plasma-activated species, such as RONS, have the potential to be consistently and precisely released by carriers, enabling their utilization in a wide array of biomedical applications. Furthermore, understanding the behavior of CAP in different environments, including water, salt solutions, culture medium, hydrogels, and nanoparticles, may lead to new opportunities for maximizing its therapeutic potential. This review article sought to provide a comprehensive and critical analysis of current biomaterial approaches for the targeted delivery of plasma-activated species in the hope to boost therapeutic response and clinical applicability.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018268207231124014915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cold atmospheric plasma (CAP) is an ionized matter with potential applications in various medical fields, ranging from wound healing and disinfection to cancer treatment. CAP's clinical usefulness stems from its ability to act as an adjustable source of reactive oxygen and nitrogen species (RONS), which are known to function as pleiotropic signaling agents within cells. Plasma-activated species, such as RONS, have the potential to be consistently and precisely released by carriers, enabling their utilization in a wide array of biomedical applications. Furthermore, understanding the behavior of CAP in different environments, including water, salt solutions, culture medium, hydrogels, and nanoparticles, may lead to new opportunities for maximizing its therapeutic potential. This review article sought to provide a comprehensive and critical analysis of current biomaterial approaches for the targeted delivery of plasma-activated species in the hope to boost therapeutic response and clinical applicability.

血浆反应物输送系统及其在生物医学领域的应用。
冷大气等离子体(CAP)是一种电离物质,可应用于从伤口愈合、消毒到癌症治疗等多个医学领域。CAP 的临床实用性源于其作为活性氧和氮物种 (RONS) 的可调源的能力,众所周知,活性氧和氮物种在细胞内发挥着多效应信号因子的作用。血浆激活的物种(如 RONS)有可能通过载体持续、精确地释放出来,从而使它们能够被广泛应用于生物医学领域。此外,了解 CAP 在不同环境(包括水、盐溶液、培养基、水凝胶和纳米颗粒)中的行为可能会为最大限度地发挥其治疗潜力带来新的机遇。这篇综述文章试图对目前用于靶向输送血浆活化物质的生物材料方法进行全面和批判性的分析,希望能提高治疗反应和临床适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信