Modeling Sequential Dependencies in Progressive Matrices: An Auto-Regressive Item Response Theory (AR-IRT) Approach.

IF 2.8 3区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Nils Myszkowski, Martin Storme
{"title":"Modeling Sequential Dependencies in Progressive Matrices: An Auto-Regressive Item Response Theory (AR-IRT) Approach.","authors":"Nils Myszkowski, Martin Storme","doi":"10.3390/jintelligence12010007","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement models traditionally make the assumption that item responses are independent from one another, conditional upon the common factor. They typically explore for violations of this assumption using various methods, but rarely do they account for the possibility that an item predicts the next. Extending the development of auto-regressive models in the context of personality and judgment tests, we propose to extend binary item response models-using, as an example, the 2-parameter logistic (2PL) model-to include auto-regressive sequential dependencies. We motivate such models and illustrate them in the context of a publicly available progressive matrices dataset. We find an auto-regressive lag-1 2PL model to outperform a traditional 2PL model in fit as well as to provide more conservative discrimination parameters and standard errors. We conclude that sequential effects are likely overlooked in the context of cognitive ability testing in general and progressive matrices tests in particular. We discuss extensions, notably models with multiple lag effects and variable lag effects.</p>","PeriodicalId":52279,"journal":{"name":"Journal of Intelligence","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10817306/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligence","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3390/jintelligence12010007","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement models traditionally make the assumption that item responses are independent from one another, conditional upon the common factor. They typically explore for violations of this assumption using various methods, but rarely do they account for the possibility that an item predicts the next. Extending the development of auto-regressive models in the context of personality and judgment tests, we propose to extend binary item response models-using, as an example, the 2-parameter logistic (2PL) model-to include auto-regressive sequential dependencies. We motivate such models and illustrate them in the context of a publicly available progressive matrices dataset. We find an auto-regressive lag-1 2PL model to outperform a traditional 2PL model in fit as well as to provide more conservative discrimination parameters and standard errors. We conclude that sequential effects are likely overlooked in the context of cognitive ability testing in general and progressive matrices tests in particular. We discuss extensions, notably models with multiple lag effects and variable lag effects.

渐进矩阵中的序列依赖建模:自回归项目反应理论(AR-IRT)方法。
测量模型的传统假设是,在共同因素的条件下,项目反应是相互独立的。这些模型通常会使用各种方法来探索是否存在违反这一假设的情况,但很少会考虑到一个项目预测下一个项目的可能性。为了扩展人格和判断测验中的自回归模型,我们建议扩展二元项目反应模型--以二参数逻辑(2PL)模型为例--以包括自回归序列依赖关系。我们以公开的渐进矩阵数据集为背景,对此类模型进行了激励和说明。我们发现,自回归滞后-1 2PL 模型的拟合优于传统的 2PL 模型,而且提供的判别参数和标准误差更为保守。我们的结论是,在一般认知能力测试,特别是渐进矩阵测试中,顺序效应很可能被忽视。我们讨论了扩展模型,特别是具有多重滞后效应和可变滞后效应的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligence
Journal of Intelligence Social Sciences-Education
CiteScore
2.80
自引率
17.10%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信