{"title":"Repairing raw metadata for metadata management","authors":"Hiba Khalid, Esteban Zimányi","doi":"10.1016/j.is.2024.102344","DOIUrl":null,"url":null,"abstract":"<div><p>With the exponential growth of data production, the generation of metadata has become an integral part of the process. Metadata plays a crucial role in facilitating enhanced data analytics, data integration, and resource management by offering valuable insights. However, inconsistencies arise due to deviations from standards in metadata recording, including missing attribute information, publishing URLs, and provenance. Furthermore, the recorded metadata may exhibit inconsistencies, such as varied value formats, special characters, and inaccurately entered values. Addressing these inconsistencies through metadata preparation can greatly enhance the user experience during data management tasks.</p><p>This paper introduces MDPrep, a system that explores the usability and applicability of data preparation techniques in improving metadata quality. Our approach involves three steps: (1) detecting and identifying problematic metadata elements and structural issues, (2) employing a keyword-based approach to enhance metadata elements and a syntax-based approach to rectify structural metadata issues, and (3) comparing the outcomes to ensure improved readability and reusability of prepared metadata files.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"122 ","pages":"Article 102344"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000024","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the exponential growth of data production, the generation of metadata has become an integral part of the process. Metadata plays a crucial role in facilitating enhanced data analytics, data integration, and resource management by offering valuable insights. However, inconsistencies arise due to deviations from standards in metadata recording, including missing attribute information, publishing URLs, and provenance. Furthermore, the recorded metadata may exhibit inconsistencies, such as varied value formats, special characters, and inaccurately entered values. Addressing these inconsistencies through metadata preparation can greatly enhance the user experience during data management tasks.
This paper introduces MDPrep, a system that explores the usability and applicability of data preparation techniques in improving metadata quality. Our approach involves three steps: (1) detecting and identifying problematic metadata elements and structural issues, (2) employing a keyword-based approach to enhance metadata elements and a syntax-based approach to rectify structural metadata issues, and (3) comparing the outcomes to ensure improved readability and reusability of prepared metadata files.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.