Sequence analysis of the Spike, RNA-dependent RNA polymerase, and protease genes reveals a distinct evolutionary pattern of SARS-CoV-2 variants circulating in Yogyakarta and Central Java provinces, Indonesia
{"title":"Sequence analysis of the Spike, RNA-dependent RNA polymerase, and protease genes reveals a distinct evolutionary pattern of SARS-CoV-2 variants circulating in Yogyakarta and Central Java provinces, Indonesia","authors":"Mohamad Saifudin Hakim, Gunadi, Ayu Rahayu, Hendra Wibawa, Laudria Stella Eryvinka, Endah Supriyati, Khanza Adzkia Vujira, Kristy Iskandar, Afiahayati, Edwin Widyanto Daniwijaya, Farida Nur Oktoviani, Luthvia Annisa, Fadila Dyah Trie Utami, Verrell Christopher Amadeus, Setiani Silvy Nurhidayah, Tiara Putri Leksono, Fiqih Vidiantoro Halim, Eggi Arguni, Titik Nuryastuti, Tri Wibawa","doi":"10.1007/s11262-023-02048-1","DOIUrl":null,"url":null,"abstract":"<p>During the Covid-19 pandemic, the resurgence of SARS-CoV-2 was due to the development of novel variants of concern (VOC). Thus, genomic surveillance is essential to monitor continuing evolution of SARS-CoV-2 and to track the emergence of novel variants. In this study, we performed phylogenetic, mutation, and selection pressure analyses of the <i>Spike, nsp12, nsp3,</i> and <i>nsp5</i> genes of SARS-CoV-2 isolates circulating in Yogyakarta and Central Java provinces, Indonesia from May 2021 to February 2022. Various bioinformatics tools were employed to investigate the evolutionary dynamics of distinct SARS-CoV-2 isolates. During the study period, 213 and 139 isolates of Omicron and Delta variants were identified, respectively. Particularly in the <i>Spike</i> gene, mutations were significantly more abundant in Omicron than in Delta variants. Consistently, in all of four genes studied, the substitution rates of Omicron were higher than that of Delta variants, especially in the <i>Spike</i> and <i>nsp12</i> genes. In addition, selective pressure analysis revealed several sites that were positively selected in particular genes, implying that these sites were functionally essential for virus evolution. In conclusion, our study demonstrated a distinct evolutionary pattern of SARS-CoV-2 variants circulating in Yogyakarta and Central Java provinces, Indonesia.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-023-02048-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
During the Covid-19 pandemic, the resurgence of SARS-CoV-2 was due to the development of novel variants of concern (VOC). Thus, genomic surveillance is essential to monitor continuing evolution of SARS-CoV-2 and to track the emergence of novel variants. In this study, we performed phylogenetic, mutation, and selection pressure analyses of the Spike, nsp12, nsp3, and nsp5 genes of SARS-CoV-2 isolates circulating in Yogyakarta and Central Java provinces, Indonesia from May 2021 to February 2022. Various bioinformatics tools were employed to investigate the evolutionary dynamics of distinct SARS-CoV-2 isolates. During the study period, 213 and 139 isolates of Omicron and Delta variants were identified, respectively. Particularly in the Spike gene, mutations were significantly more abundant in Omicron than in Delta variants. Consistently, in all of four genes studied, the substitution rates of Omicron were higher than that of Delta variants, especially in the Spike and nsp12 genes. In addition, selective pressure analysis revealed several sites that were positively selected in particular genes, implying that these sites were functionally essential for virus evolution. In conclusion, our study demonstrated a distinct evolutionary pattern of SARS-CoV-2 variants circulating in Yogyakarta and Central Java provinces, Indonesia.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.