Marc Carreras-Sospedra, Shupeng Zhu, Michael MacKinnon, William Lassman, Jeffrey D. Mirocha, Michele Barbato, Donald Dabdub
{"title":"Air quality and health impacts of the 2020 wildfires in California","authors":"Marc Carreras-Sospedra, Shupeng Zhu, Michael MacKinnon, William Lassman, Jeffrey D. Mirocha, Michele Barbato, Donald Dabdub","doi":"10.1186/s42408-023-00234-y","DOIUrl":null,"url":null,"abstract":"Wildfires in 2020 ravaged California to set the annual record of area burned to date. Clusters of wildfires in Northern California surrounded the Bay Area covering the skies with smoke and raising the air pollutant concentrations to hazardous levels. This study uses the Fire Inventory from the National Center for Atmospheric Research database and the Community Multiscale Air Quality model to estimate the effects of wildfire emissions on air quality during the period from August 16 to October 28 of 2020. In addition, low-cost sensor data for fine particulate matter (PM2.5) from the PurpleAir network is used to enhance modeled PM2.5 concentrations. The resulting impacts on ozone and PM2.5 are used to quantify the health impacts caused by wildfires using the Benefits Mapping and Analysis Program – Community Edition. Wildfire activity significantly increased direct PM2.5 emissions and emissions of PM2.5 and ozone precursors. Direct PM2.5 emissions surged up to 38 times compared to an average day. Modeling results indicated that wildfires alone led to a rise in ozone daily maximum 8-h average by up to 10 ppb and exceeded PM2.5 air quality standards in numerous locations by up to 10 times. While modeled PM2.5 concentrations were lower than measurements, correcting these with PurpleAir data improved the accuracy. The correction using PurpleAir data increased estimates of wildfire-induced mortality due to PM2.5 exposure by up to 16%. The increased hospital admissions and premature mortality attributed to wildfires were found to be comparable to the health impacts avoided by strategies aimed at meeting ozone and PM2.5 air quality standards. This suggests that widespread wildfire emissions can negate years of efforts dedicated to controlling air pollution. The integration of low-cost sensor data proved invaluable in refining the estimates of health impacts from PM2.5 resulting from wildfires.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"10 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s42408-023-00234-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wildfires in 2020 ravaged California to set the annual record of area burned to date. Clusters of wildfires in Northern California surrounded the Bay Area covering the skies with smoke and raising the air pollutant concentrations to hazardous levels. This study uses the Fire Inventory from the National Center for Atmospheric Research database and the Community Multiscale Air Quality model to estimate the effects of wildfire emissions on air quality during the period from August 16 to October 28 of 2020. In addition, low-cost sensor data for fine particulate matter (PM2.5) from the PurpleAir network is used to enhance modeled PM2.5 concentrations. The resulting impacts on ozone and PM2.5 are used to quantify the health impacts caused by wildfires using the Benefits Mapping and Analysis Program – Community Edition. Wildfire activity significantly increased direct PM2.5 emissions and emissions of PM2.5 and ozone precursors. Direct PM2.5 emissions surged up to 38 times compared to an average day. Modeling results indicated that wildfires alone led to a rise in ozone daily maximum 8-h average by up to 10 ppb and exceeded PM2.5 air quality standards in numerous locations by up to 10 times. While modeled PM2.5 concentrations were lower than measurements, correcting these with PurpleAir data improved the accuracy. The correction using PurpleAir data increased estimates of wildfire-induced mortality due to PM2.5 exposure by up to 16%. The increased hospital admissions and premature mortality attributed to wildfires were found to be comparable to the health impacts avoided by strategies aimed at meeting ozone and PM2.5 air quality standards. This suggests that widespread wildfire emissions can negate years of efforts dedicated to controlling air pollution. The integration of low-cost sensor data proved invaluable in refining the estimates of health impacts from PM2.5 resulting from wildfires.
期刊介绍:
Fire Ecology is the international scientific journal supported by the Association for Fire Ecology. Fire Ecology publishes peer-reviewed articles on all ecological and management aspects relating to wildland fire. We welcome submissions on topics that include a broad range of research on the ecological relationships of fire to its environment, including, but not limited to:
Ecology (physical and biological fire effects, fire regimes, etc.)
Social science (geography, sociology, anthropology, etc.)
Fuel
Fire science and modeling
Planning and risk management
Law and policy
Fire management
Inter- or cross-disciplinary fire-related topics
Technology transfer products.