{"title":"Spatial analyses on pre-earthquake ionospheric anomalies and magnetic storms observed by China seismo-electromagnetic satellite in August 2018","authors":"Jann-Yenq Tiger Liu, Xuhui Shen, Fu-Yuan Chang, Yuh-Ing Chen, Yang-Yi Sun, Chieh-Hung Chen, Sergey Pulinets, Katsumi Hattori, Dimitar Ouzounov, Valerio Tramutoli, Michel Parrot, Wei-Sheng Chen, Cheng-Yan Liu, Fei Zhang, Dapeng Liu, Xue-Min Zhang, Rui Yan, Qiao Wang","doi":"10.1186/s40562-024-00320-2","DOIUrl":null,"url":null,"abstract":"The China Seismo-Electromagnetic Satellite (CSES), with a sun-synchronous orbit at 507 km altitude, was launched on 2 February 2018 to investigate pre-earthquake ionospheric anomalies (PEIAs) and ionospheric space weather. The CSES probes manifest longitudinal features of four-peak plasma density and three plasma depletions in the equatorial/low-latitudes as well as mid-latitude troughs. CSES plasma and the total electron content (TEC) of the global ionosphere map (GIM) are used to study PEIAs associated with a destructive M7.0 earthquake and its followed M6.5 and M6.3/M6.9 earthquakes in Lombok, Indonesia, on 5, 17, and 19 August 2018, respectively, as well as to examine ionospheric disturbances induced by an intense storm with the Dst index of − 175 nT on 26 August 2018. Anomalous increases (decreases) in the GIM TEC and CSES plasma density (temperature) frequently appear specifically over the epicenter days 1–5 before the M7.0 earthquake and followed earthquakes, when the geomagnetic conditions of these PEIA periods are relatively quiet, Dst: − 37 to 19 nT. In contrast, TEC and CSES plasma parameter anomalies occur globally in the southern hemisphere during the storm days of 26–28 August 2018. The CSES ion velocity shows that the electric fields of PEIAs associated with the M7.0 earthquake are 0.21/0.06 mV/m eastward and 0.11/0.10 mV/m downward at post-midnight/post-noon on 1–3 August 2018, while the penetration electric fields during the storm periods of 26–28 August 2018 are 0.17/0.45 mV/m westward/downward at post-midnight of 02:00 LT and 0.26/0.26 mV/m eastward/upward at post-noon of 14:00 LT. Spatial analyses on CSES plasma discriminate PEIAs from global effects and locate the epicenter of possible forthcoming large earthquakes. CSES ion velocities are useful to derive PEIA- and storm-related electric fields in the ionosphere. ","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"2 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-024-00320-2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The China Seismo-Electromagnetic Satellite (CSES), with a sun-synchronous orbit at 507 km altitude, was launched on 2 February 2018 to investigate pre-earthquake ionospheric anomalies (PEIAs) and ionospheric space weather. The CSES probes manifest longitudinal features of four-peak plasma density and three plasma depletions in the equatorial/low-latitudes as well as mid-latitude troughs. CSES plasma and the total electron content (TEC) of the global ionosphere map (GIM) are used to study PEIAs associated with a destructive M7.0 earthquake and its followed M6.5 and M6.3/M6.9 earthquakes in Lombok, Indonesia, on 5, 17, and 19 August 2018, respectively, as well as to examine ionospheric disturbances induced by an intense storm with the Dst index of − 175 nT on 26 August 2018. Anomalous increases (decreases) in the GIM TEC and CSES plasma density (temperature) frequently appear specifically over the epicenter days 1–5 before the M7.0 earthquake and followed earthquakes, when the geomagnetic conditions of these PEIA periods are relatively quiet, Dst: − 37 to 19 nT. In contrast, TEC and CSES plasma parameter anomalies occur globally in the southern hemisphere during the storm days of 26–28 August 2018. The CSES ion velocity shows that the electric fields of PEIAs associated with the M7.0 earthquake are 0.21/0.06 mV/m eastward and 0.11/0.10 mV/m downward at post-midnight/post-noon on 1–3 August 2018, while the penetration electric fields during the storm periods of 26–28 August 2018 are 0.17/0.45 mV/m westward/downward at post-midnight of 02:00 LT and 0.26/0.26 mV/m eastward/upward at post-noon of 14:00 LT. Spatial analyses on CSES plasma discriminate PEIAs from global effects and locate the epicenter of possible forthcoming large earthquakes. CSES ion velocities are useful to derive PEIA- and storm-related electric fields in the ionosphere.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.