Self-Propagating High-Temperature Synthesis of High-Entropy Carbides in the Gasless Thermal Explosion Mode

IF 1.1 4区 化学 Q4 CHEMISTRY, PHYSICAL
Yu. S. Vergunova, S. G. Vadchenko, I. D. Kovalev, D. Yu. Kovalev, A. S. Rogachev,  M. I. Alymov
{"title":"Self-Propagating High-Temperature Synthesis of High-Entropy Carbides in the Gasless Thermal Explosion Mode","authors":"Yu. S. Vergunova,&nbsp;S. G. Vadchenko,&nbsp;I. D. Kovalev,&nbsp;D. Yu. Kovalev,&nbsp;A. S. Rogachev,&nbsp; M. I. Alymov","doi":"10.1134/S001250162360033X","DOIUrl":null,"url":null,"abstract":"<p>High-entropy carbides are a new class of inorganic compounds promising for a wide range of applications. A new concept was proposed for the synthesis of powders of high-entropy carbides by self-propagating high-temperature synthesis (SHS) in the gasless thermal explosion mode from previously mechanically synthesized and structured reaction mixtures. For the first time, high-entropy carbides TaTiNbVWC<sub>5</sub> and TaNbVMoWC<sub>5</sub> were produced by this method, and their crystal structure was determined and compared with those of similar compounds synthesized by sintering.</p>","PeriodicalId":532,"journal":{"name":"Doklady Physical Chemistry","volume":"513 2","pages":"187 - 190"},"PeriodicalIF":1.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S001250162360033X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy carbides are a new class of inorganic compounds promising for a wide range of applications. A new concept was proposed for the synthesis of powders of high-entropy carbides by self-propagating high-temperature synthesis (SHS) in the gasless thermal explosion mode from previously mechanically synthesized and structured reaction mixtures. For the first time, high-entropy carbides TaTiNbVWC5 and TaNbVMoWC5 were produced by this method, and their crystal structure was determined and compared with those of similar compounds synthesized by sintering.

Abstract Image

在无气热爆炸模式下自蔓延高温合成高熵碳化物
摘要 高熵碳化物是一类新型无机化合物,具有广泛的应用前景。研究人员提出了一种新的概念,即通过无气热爆炸模式下的自蔓延高温合成(SHS),利用之前机械合成的结构化反应混合物合成高熵碳化物粉末。通过这种方法首次制备出了高熵碳化物 TaTiNbVWC5 和 TaNbVMoWC5,并测定了它们的晶体结构,并将其与烧结法合成的同类化合物进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Doklady Physical Chemistry
Doklady Physical Chemistry 化学-物理化学
CiteScore
1.50
自引率
0.00%
发文量
9
审稿时长
6-12 weeks
期刊介绍: Doklady Physical Chemistry is a monthly journal containing English translations of current Russian research in physical chemistry from the Physical Chemistry sections of the Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences). The journal publishes the most significant new research in physical chemistry being done in Russia, thus ensuring its scientific priority. Doklady Physical Chemistry presents short preliminary accounts of the application of the state-of-the-art physical chemistry ideas and methods to the study of organic and inorganic compounds and macromolecules; polymeric, inorganic and composite materials as well as corresponding processes. The journal is intended for scientists in all fields of chemistry and in interdisciplinary sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信