Ziqing Wei, Haihan Yu, Huijuan Zhao, Mingze Wei, Han Xing, Jinyan Pei, Yang Yang, Kaidi Ren
{"title":"Broadening horizons: ferroptosis as a new target for traumatic brain injury","authors":"Ziqing Wei, Haihan Yu, Huijuan Zhao, Mingze Wei, Han Xing, Jinyan Pei, Yang Yang, Kaidi Ren","doi":"10.1093/burnst/tkad051","DOIUrl":null,"url":null,"abstract":"Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc−/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"7 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkad051","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc−/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.
期刊介绍:
The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.