Chemical bond engineering toward extraordinary power factor and service stability in thermoelectric copper selenide

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2024-02-21 DOI:10.1016/j.joule.2023.12.019
Haihua Hu , Bin Su , Xiaodong Liu , Hao-Cheng Thong , Yilin Jiang , Hezhang Li , Jing-Wei Li , Hua-Lu Zhuang , Zhanran Han , Jincheng Yu , B. Layla Mehdi , Jing-Feng Li
{"title":"Chemical bond engineering toward extraordinary power factor and service stability in thermoelectric copper selenide","authors":"Haihua Hu ,&nbsp;Bin Su ,&nbsp;Xiaodong Liu ,&nbsp;Hao-Cheng Thong ,&nbsp;Yilin Jiang ,&nbsp;Hezhang Li ,&nbsp;Jing-Wei Li ,&nbsp;Hua-Lu Zhuang ,&nbsp;Zhanran Han ,&nbsp;Jincheng Yu ,&nbsp;B. Layla Mehdi ,&nbsp;Jing-Feng Li","doi":"10.1016/j.joule.2023.12.019","DOIUrl":null,"url":null,"abstract":"<div><p><span>Porous structures can hinder phonon transport but inevitably deteriorate electrical and mechanical properties. In order to suppress the formation of pores, we propose a chemical bond engineering strategy to constrain the volatile Se in Cu</span><sub>2</sub><span>Se-based materials via applicable elemental substitution. Benefiting from the reduced porosity and successful dual doping<span>, Cu vacancies and carrier mobility are optimized for the Gd</span></span><sub>2</sub>S<sub>3</sub>-added Cu<sub>1.99</sub>Se samples, leading to an ultrahigh power factor of ∼17.4 μW cm<sup>−1</sup> K<sup>−2</sup> at 1,000 K and a high figure of merit of ∼2.5 at 1,050 K. The fabricated segmented single-leg device maintains a high conversion efficiency of ∼9.0% and a power density of ∼636.3 mW cm<sup>−2</sup> at Δ<em>T</em><span> = 516 K without obvious degradation over 110 cycles of stability tests. Our work demonstrates a paradigm to control the porosity caused by elemental volatilization, providing more opportunities to enhance both the thermoelectric performance and service stability.</span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 2","pages":"Pages 416-429"},"PeriodicalIF":35.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435123005366","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Porous structures can hinder phonon transport but inevitably deteriorate electrical and mechanical properties. In order to suppress the formation of pores, we propose a chemical bond engineering strategy to constrain the volatile Se in Cu2Se-based materials via applicable elemental substitution. Benefiting from the reduced porosity and successful dual doping, Cu vacancies and carrier mobility are optimized for the Gd2S3-added Cu1.99Se samples, leading to an ultrahigh power factor of ∼17.4 μW cm−1 K−2 at 1,000 K and a high figure of merit of ∼2.5 at 1,050 K. The fabricated segmented single-leg device maintains a high conversion efficiency of ∼9.0% and a power density of ∼636.3 mW cm−2 at ΔT = 516 K without obvious degradation over 110 cycles of stability tests. Our work demonstrates a paradigm to control the porosity caused by elemental volatilization, providing more opportunities to enhance both the thermoelectric performance and service stability.

Abstract Image

Abstract Image

化学键工程实现热电硒化铜的超高功率因数和使用稳定性
多孔结构会阻碍声子传输,但不可避免地会降低电气和机械性能。为了抑制孔隙的形成,我们提出了一种化学键工程策略,通过适用的元素替代来限制 Cu2Se 基材料中 Se 的挥发。得益于孔隙率的降低和双掺杂的成功,添加了 Gd2S3 的 Cu1.99Se 样品的铜空位和载流子迁移率得到了优化,从而在 1,000 K 时获得了 ∼17.4 μW cm-1 K-2 的超高功率因数,在 1,050 K 时获得了 ∼2.5 的高优点系数。所制造的分段式单腿器件在 ΔT = 516 K 时保持了 ∼9.0% 的高转换效率和 ∼636.3 mW cm-2 的功率密度,在 110 个周期的稳定性测试中没有出现明显衰减。我们的工作展示了一种控制元素挥发造成的孔隙率的范例,为提高热电性能和服务稳定性提供了更多机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信