On the practical applicability of thermal evaporation technique to fabricate Na thin metal anodes for Na-metal batteries

IF 5.4 Q2 CHEMISTRY, PHYSICAL
L. Fallarino , G. Salaverri , R. Cid , E. Gucciardi , M. Cabello , E. Gonzalo , M. Galceran
{"title":"On the practical applicability of thermal evaporation technique to fabricate Na thin metal anodes for Na-metal batteries","authors":"L. Fallarino ,&nbsp;G. Salaverri ,&nbsp;R. Cid ,&nbsp;E. Gucciardi ,&nbsp;M. Cabello ,&nbsp;E. Gonzalo ,&nbsp;M. Galceran","doi":"10.1016/j.powera.2024.100137","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate, as proof of concept, a materials design path that allows us to exploit thermal deposition technique to fabricate sodium (Na) metal anodes at the microscale. Our study reveals that Na thin anodes &lt;10 μm, directly coated on a stainless-steel current collector, reduces the energy barrier of Na nucleation during plating process. Likewise, evaporated thin-film sodium anodes enable achieving a cycling in a full battery configuration as stable as with bulk Na anode, and considerably more stable than the here presented anode-less case. These insights may lead to practical design changes toward the efficient use of metallic Na, alleviating weight and costs. In addition, they provide a solid starting point for future developments that focus on improving the stability and extending the life of Na-metal batteries. All this paves the way for the next-generation of sodium-based energy storage technologies, where energy density and cost are key factors.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"26 ","pages":"Article 100137"},"PeriodicalIF":5.4000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000039/pdfft?md5=bb33af74c02369e3691fedab93ae37eb&pid=1-s2.0-S2666248524000039-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate, as proof of concept, a materials design path that allows us to exploit thermal deposition technique to fabricate sodium (Na) metal anodes at the microscale. Our study reveals that Na thin anodes <10 μm, directly coated on a stainless-steel current collector, reduces the energy barrier of Na nucleation during plating process. Likewise, evaporated thin-film sodium anodes enable achieving a cycling in a full battery configuration as stable as with bulk Na anode, and considerably more stable than the here presented anode-less case. These insights may lead to practical design changes toward the efficient use of metallic Na, alleviating weight and costs. In addition, they provide a solid starting point for future developments that focus on improving the stability and extending the life of Na-metal batteries. All this paves the way for the next-generation of sodium-based energy storage technologies, where energy density and cost are key factors.

论热蒸发技术在制造 Na 金属电池用 Na 薄金属阳极中的实用性
作为概念验证,我们展示了一种材料设计途径,使我们能够利用热沉积技术在微尺度上制造钠(Na)金属阳极。我们的研究发现,直接镀在不锈钢集流器上的 10 μm 钠薄膜阳极可降低电镀过程中钠成核的能量障碍。同样,蒸发薄膜钠阳极也能实现与块状钠阳极一样稳定的全电池配置循环,而且比这里介绍的无阳极情况要稳定得多。这些见解可能会带来实际设计上的改变,从而有效利用金属钠,减轻重量,降低成本。此外,它们还为未来的发展提供了一个坚实的起点,即提高金属态 Na 电池的稳定性并延长其使用寿命。所有这些都为下一代钠基储能技术铺平了道路,因为能量密度和成本是下一代钠基储能技术的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信