Site-selective protonation enables efficient carbon monoxide electroreduction to acetate.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xinyue Wang, Yuanjun Chen, Feng Li, Rui Kai Miao, Jianan Erick Huang, Zilin Zhao, Xiao-Yan Li, Roham Dorakhan, Senlin Chu, Jinhong Wu, Sixing Zheng, Weiyan Ni, Dongha Kim, Sungjin Park, Yongxiang Liang, Adnan Ozden, Pengfei Ou, Yang Hou, David Sinton, Edward H Sargent
{"title":"Site-selective protonation enables efficient carbon monoxide electroreduction to acetate.","authors":"Xinyue Wang, Yuanjun Chen, Feng Li, Rui Kai Miao, Jianan Erick Huang, Zilin Zhao, Xiao-Yan Li, Roham Dorakhan, Senlin Chu, Jinhong Wu, Sixing Zheng, Weiyan Ni, Dongha Kim, Sungjin Park, Yongxiang Liang, Adnan Ozden, Pengfei Ou, Yang Hou, David Sinton, Edward H Sargent","doi":"10.1038/s41467-024-44727-z","DOIUrl":null,"url":null,"abstract":"<p><p>Electrosynthesis of acetate from CO offers the prospect of a low-carbon-intensity route to this valuable chemical--but only once sufficient selectivity, reaction rate and stability are realized. It is a high priority to achieve the protonation of the relevant intermediates in a controlled fashion, and to achieve this while suppressing the competing hydrogen evolution reaction (HER) and while steering multicarbon (C<sub>2+</sub>) products to a single valuable product--an example of which is acetate. Here we report interface engineering to achieve solid/liquid/gas triple-phase interface regulation, and we find that it leads to site-selective protonation of intermediates and the preferential stabilization of the ketene intermediates: this, we find, leads to improved selectivity and energy efficiency toward acetate. Once we further tune the catalyst composition and also optimize for interfacial water management, we achieve a cadmium-copper catalyst that shows an acetate Faradaic efficiency (FE) of 75% with ultralow HER (<0.2% H<sub>2</sub> FE) at 150 mA cm<sup>-2</sup>. We develop a high-pressure membrane electrode assembly system to increase CO coverage by controlling gas reactant distribution and achieve 86% acetate FE simultaneous with an acetate full-cell energy efficiency (EE) of 32%, the highest energy efficiency reported in direct acetate electrosynthesis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"616"},"PeriodicalIF":15.7000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-44727-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrosynthesis of acetate from CO offers the prospect of a low-carbon-intensity route to this valuable chemical--but only once sufficient selectivity, reaction rate and stability are realized. It is a high priority to achieve the protonation of the relevant intermediates in a controlled fashion, and to achieve this while suppressing the competing hydrogen evolution reaction (HER) and while steering multicarbon (C2+) products to a single valuable product--an example of which is acetate. Here we report interface engineering to achieve solid/liquid/gas triple-phase interface regulation, and we find that it leads to site-selective protonation of intermediates and the preferential stabilization of the ketene intermediates: this, we find, leads to improved selectivity and energy efficiency toward acetate. Once we further tune the catalyst composition and also optimize for interfacial water management, we achieve a cadmium-copper catalyst that shows an acetate Faradaic efficiency (FE) of 75% with ultralow HER (<0.2% H2 FE) at 150 mA cm-2. We develop a high-pressure membrane electrode assembly system to increase CO coverage by controlling gas reactant distribution and achieve 86% acetate FE simultaneous with an acetate full-cell energy efficiency (EE) of 32%, the highest energy efficiency reported in direct acetate electrosynthesis.

Abstract Image

位点选择性质子化可使一氧化碳高效电还原成醋酸盐。
从一氧化碳电合成醋酸纤维为获得这种有价值的化学品提供了一条低碳强度的途径--但前提是必须实现足够的选择性、反应速率和稳定性。当务之急是以可控方式实现相关中间产物的质子化,并在抑制竞争性氢进化反应(HER)的同时,将多碳(C2+)产物引导至单一有价值的产物--例如醋酸酯。在此,我们报告了通过界面工程实现固/液/气三相界面调节的情况,我们发现这导致了中间产物的位点选择性质子化和烯酮中间产物的优先稳定化:我们发现,这导致了对乙酸酯的选择性和能效的提高。当我们进一步调整催化剂成分并优化界面水管理后,我们得到了一种镉铜催化剂,在 150 mA cm-2 电流条件下,醋酸法拉第效率 (FE) 为 75%,超低 HER (2 FE)。我们开发了一种高压膜电极组装系统,通过控制气体反应物的分布来提高一氧化碳的覆盖率,并实现了 86% 的醋酸酯 FE,同时醋酸酯全电池能效 (EE) 达到 32%,这是在直接醋酸酯电合成中报告的最高能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信