Genome-wide profiling of piggyBac transposon insertion mutants reveals loss of the F1F0 ATPase complex causes fluconazole resistance in Candida glabrata.

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Microbiology Pub Date : 2024-04-01 Epub Date: 2024-01-19 DOI:10.1111/mmi.15229
Eve W L Chow, Yabing Song, Haitao Wang, Xiaoli Xu, Jiaxin Gao, Yue Wang
{"title":"Genome-wide profiling of piggyBac transposon insertion mutants reveals loss of the F<sub>1</sub>F<sub>0</sub> ATPase complex causes fluconazole resistance in Candida glabrata.","authors":"Eve W L Chow, Yabing Song, Haitao Wang, Xiaoli Xu, Jiaxin Gao, Yue Wang","doi":"10.1111/mmi.15229","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive candidiasis caused by non-albicans species has been on the rise, with Candida glabrata emerging as the second most common etiological agent. Candida glabrata possesses an intrinsically lower susceptibility to azoles and an alarming propensity to rapidly develop high-level azole resistance during treatment. In this study, we have developed an efficient piggyBac (PB) transposon-mediated mutagenesis system in C. glabrata to conduct genome-wide genetic screens and applied it to profile genes that contribute to azole resistance. When challenged with the antifungal drug fluconazole, PB insertion into 270 genes led to significant resistance. A large subset of these genes has a role in the mitochondria, including almost all genes encoding the subunits of the F<sub>1</sub>F<sub>0</sub> ATPase complex. We show that deleting ATP3 or ATP22 results in increased azole resistance but does not affect susceptibility to polyenes and echinocandins. The increased azole resistance is due to increased expression of PDR1 that encodes a transcription factor known to promote drug efflux pump expression. Deleting PDR1 in the atp3Δ or atp22Δ mutant resulted in hypersensitivity to fluconazole. Our results shed light on the mechanisms contributing to azole resistance in C. glabrata. This PB transposon-mediated mutagenesis system can significantly facilitate future genome-wide genetic screens.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"781-797"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15229","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Invasive candidiasis caused by non-albicans species has been on the rise, with Candida glabrata emerging as the second most common etiological agent. Candida glabrata possesses an intrinsically lower susceptibility to azoles and an alarming propensity to rapidly develop high-level azole resistance during treatment. In this study, we have developed an efficient piggyBac (PB) transposon-mediated mutagenesis system in C. glabrata to conduct genome-wide genetic screens and applied it to profile genes that contribute to azole resistance. When challenged with the antifungal drug fluconazole, PB insertion into 270 genes led to significant resistance. A large subset of these genes has a role in the mitochondria, including almost all genes encoding the subunits of the F1F0 ATPase complex. We show that deleting ATP3 or ATP22 results in increased azole resistance but does not affect susceptibility to polyenes and echinocandins. The increased azole resistance is due to increased expression of PDR1 that encodes a transcription factor known to promote drug efflux pump expression. Deleting PDR1 in the atp3Δ or atp22Δ mutant resulted in hypersensitivity to fluconazole. Our results shed light on the mechanisms contributing to azole resistance in C. glabrata. This PB transposon-mediated mutagenesis system can significantly facilitate future genome-wide genetic screens.

Abstract Image

对piggyBac转座子插入突变体的全基因组分析表明,F1 F0 ATPase复合物的缺失会导致草绿色念珠菌对氟康唑产生抗性。
由非阿氏念珠菌引起的侵袭性念珠菌病呈上升趋势,其中格拉布氏念珠菌已成为第二大常见病原体。格拉布氏念珠菌本质上对唑类药物的敏感性较低,而且在治疗过程中迅速产生高水平唑类药物耐药性的倾向令人担忧。在这项研究中,我们开发了一种高效的 PiggyBac(PB)转座子介导的诱变系统,用于在格氏念珠菌中进行全基因组遗传筛选,并将其用于分析导致唑类抗药性的基因。在抗真菌药物氟康唑的作用下,270 个基因的 PB 插入导致了显著的抗药性。这些基因中有很大一部分在线粒体中发挥作用,包括几乎所有编码 F1 F0 ATPase 复合物亚基的基因。我们的研究表明,删除 ATP3 或 ATP22 会导致唑类抗性增强,但不会影响对多烯类化合物和棘白菌素的敏感性。唑抗性增强的原因是 PDR1 的表达增加,PDR1 编码一种已知能促进药物外排泵表达的转录因子。在 atp3Δ 或 atp22Δ 突变体中删除 PDR1 会导致对氟康唑过敏。我们的研究结果揭示了草履虫对唑类抗性的机制。这种 PB 转座子介导的诱变系统能极大地促进未来的全基因组遗传筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信