Santoshkumar R Gaikwad, Narayan S Punekar, Ejaj K Pathan
{"title":"Characterization of a novel 4-guanidinobutyrase from Candida parapsilosis.","authors":"Santoshkumar R Gaikwad, Narayan S Punekar, Ejaj K Pathan","doi":"10.1093/femsyr/foae003","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes of the ureohydrolase superfamily are specific in recognizing their substrates. While looking to broaden the substrate specificity of 4-guanidinobutyrase (GBase), we isolated a yeast, typed as Candida parapsilosis (NCIM 3689), that efficiently utilized both 4-guanidinobutyrate (GB) and 3-guanidinopropionate (GP) as a sole source of nitrogen. A putative GBase sequence was identified from its genome upon pBLAST query using the GBase sequence from Aspergillus niger (AnGBase). The C. parapsilosis GBase (CpGBase) ORF was PCR amplified, cloned, and sequenced. Further, the functional CpGBase protein expressed in Saccharomyces cerevisiae functioned as GBase and 3-guanidinopropionase (GPase). S. cerevisiae cannot grow on GB or GP. However, the transformants expressing CpGBase acquired the ability to utilize and grow on both GB and GP. The expressed CpGBase protein was enriched and analyzed for substrate saturation and product inhibition by γ-aminobutyric acid and β-alanine. In contrast to the well-characterized AnGBase, CpGBase from C. parapsilosis is a novel ureohydrolase and showed hyperbolic saturation for GB and GP with comparable efficiency (Vmax/KM values of 3.4 and 2.0, respectively). With the paucity of structural information and limited active site data available on ureohydrolases, CpGBase offers an excellent paradigm to explore this class of enzymes.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzymes of the ureohydrolase superfamily are specific in recognizing their substrates. While looking to broaden the substrate specificity of 4-guanidinobutyrase (GBase), we isolated a yeast, typed as Candida parapsilosis (NCIM 3689), that efficiently utilized both 4-guanidinobutyrate (GB) and 3-guanidinopropionate (GP) as a sole source of nitrogen. A putative GBase sequence was identified from its genome upon pBLAST query using the GBase sequence from Aspergillus niger (AnGBase). The C. parapsilosis GBase (CpGBase) ORF was PCR amplified, cloned, and sequenced. Further, the functional CpGBase protein expressed in Saccharomyces cerevisiae functioned as GBase and 3-guanidinopropionase (GPase). S. cerevisiae cannot grow on GB or GP. However, the transformants expressing CpGBase acquired the ability to utilize and grow on both GB and GP. The expressed CpGBase protein was enriched and analyzed for substrate saturation and product inhibition by γ-aminobutyric acid and β-alanine. In contrast to the well-characterized AnGBase, CpGBase from C. parapsilosis is a novel ureohydrolase and showed hyperbolic saturation for GB and GP with comparable efficiency (Vmax/KM values of 3.4 and 2.0, respectively). With the paucity of structural information and limited active site data available on ureohydrolases, CpGBase offers an excellent paradigm to explore this class of enzymes.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.