Discovery and characterization of the α-amylases cDNAs from Enchytraeus albidus shed light on the evolution of “Enchytraeus-Eisenia type” Amy homologs in Annelida
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Łukasz Gajda, Agata Daszkowska-Golec, Piotr Świątek
{"title":"Discovery and characterization of the α-amylases cDNAs from Enchytraeus albidus shed light on the evolution of “Enchytraeus-Eisenia type” Amy homologs in Annelida","authors":"Łukasz Gajda, Agata Daszkowska-Golec, Piotr Świątek","doi":"10.1016/j.biochi.2024.01.008","DOIUrl":null,"url":null,"abstract":"<div><p><span>Although enchytraeids<span> have gained popularity in scientific research, fundamental questions regarding their feeding ecology and biology remain largely unexplored. This study investigates α-amylases, major digestive enzymes<span> responsible for hydrolyzing starch and similar polysaccharides into sugars, in </span></span></span><span><em>Enchytraeus albidus</em></span><span>. Genetic data related to α-amylases is currently lacking for the family Enchytraeidae but also for the entire Annelida. To detect and identify coding sequences of the expressed α-amylase genes in COI-monohaplotype culture (PL-A strain) of </span><em>E</em>. <em>albidus</em><span>, we used classical “gene fishing” and transcriptomic approaches. We also compared coding sequence variants of α-amylase retrieved from transcriptomic data related to freeze-tolerant strains. Our results reveal that </span><em>E</em>. <em>albidus</em> possesses two distinct α-amylase genes (Amy I and Amy II) that are homologs to earthworm <span><em>Eisenia fetida</em></span> Ef-Amy genes. Different strains of <em>E</em>. <em>albidus</em><span> possess distinctive alleles of α-amylases with unique SNP patterns specific to a particular strain. Unlike Amy II, Amy I seems to be a highly polymorphic and multicopy gene. The domain architecture of the putative Amy proteins was found the same as for classical animal α-amylases with ABC-domains. A characteristic feature of Amy II is the lack of GHGA motif in the flexible loop region, similarly to many insect amylases. We identified “</span><em>Enchytraeus</em>-<em>Eisenia</em><span> type” α-amylase homologs in other clitellates<span><span> and polychaetes, indicating the ancestral origin of Amy I/II proteins in Annelida. This study provides the first insight into the endogenous non-proteolytic digestive enzyme genes in potworms, discusses the evolution of Amy α-amylases in Annelida, and explores </span>phylogenetic implications.</span></span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424000269","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Although enchytraeids have gained popularity in scientific research, fundamental questions regarding their feeding ecology and biology remain largely unexplored. This study investigates α-amylases, major digestive enzymes responsible for hydrolyzing starch and similar polysaccharides into sugars, in Enchytraeus albidus. Genetic data related to α-amylases is currently lacking for the family Enchytraeidae but also for the entire Annelida. To detect and identify coding sequences of the expressed α-amylase genes in COI-monohaplotype culture (PL-A strain) of E. albidus, we used classical “gene fishing” and transcriptomic approaches. We also compared coding sequence variants of α-amylase retrieved from transcriptomic data related to freeze-tolerant strains. Our results reveal that E. albidus possesses two distinct α-amylase genes (Amy I and Amy II) that are homologs to earthworm Eisenia fetida Ef-Amy genes. Different strains of E. albidus possess distinctive alleles of α-amylases with unique SNP patterns specific to a particular strain. Unlike Amy II, Amy I seems to be a highly polymorphic and multicopy gene. The domain architecture of the putative Amy proteins was found the same as for classical animal α-amylases with ABC-domains. A characteristic feature of Amy II is the lack of GHGA motif in the flexible loop region, similarly to many insect amylases. We identified “Enchytraeus-Eisenia type” α-amylase homologs in other clitellates and polychaetes, indicating the ancestral origin of Amy I/II proteins in Annelida. This study provides the first insight into the endogenous non-proteolytic digestive enzyme genes in potworms, discusses the evolution of Amy α-amylases in Annelida, and explores phylogenetic implications.