Multidomain spectral approach to rational-order fractional derivatives

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Christian Klein, Nikola Stoilov
{"title":"Multidomain spectral approach to rational-order fractional derivatives","authors":"Christian Klein,&nbsp;Nikola Stoilov","doi":"10.1111/sapm.12671","DOIUrl":null,"url":null,"abstract":"<p>We propose a method to numerically compute fractional derivatives (or the fractional Laplacian) on the whole real line via Riesz fractional integrals. The compactified real line is divided into a number of intervals, thus amounting to a multidomain approach; after transformations in accordance with the underlying <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>q</mi>\n </msub>\n <annotation>$Z_{q}$</annotation>\n </semantics></math> curve ensuring analyticity of the respective integrands, the integrals over the different domains are computed with a Clenshaw–Curtis algorithm. As an example, we consider solitary waves for fractional Korteweg-de Vries equations and compare these to results obtained with a discrete Fourier transform.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12671","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method to numerically compute fractional derivatives (or the fractional Laplacian) on the whole real line via Riesz fractional integrals. The compactified real line is divided into a number of intervals, thus amounting to a multidomain approach; after transformations in accordance with the underlying Z q $Z_{q}$ curve ensuring analyticity of the respective integrands, the integrals over the different domains are computed with a Clenshaw–Curtis algorithm. As an example, we consider solitary waves for fractional Korteweg-de Vries equations and compare these to results obtained with a discrete Fourier transform.

Abstract Image

有理阶分数导数的多域谱方法
我们提出了一种通过里兹分数积分在整个实线上数值计算分数导数(或分数拉普拉斯)的方法。紧凑实线被划分为若干区间,因此相当于一种多域方法;在根据底层 Zq$Z_{q}$ 曲线进行变换以确保各自积分的可分析性之后,不同域上的积分用克伦肖-柯蒂斯算法计算。例如,我们考虑了分数 Korteweg-de Vries 方程的孤波,并将其与离散傅里叶变换得到的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信