Yoshifumi Hashikawa*, Shumpei Sadai and Yasujiro Murata*,
{"title":"Molecular CO2 Storage: State of a Single-Molecule Gas","authors":"Yoshifumi Hashikawa*, Shumpei Sadai and Yasujiro Murata*, ","doi":"10.1021/acsphyschemau.3c00068","DOIUrl":null,"url":null,"abstract":"<p >CO<sub>2</sub> evolution is one of the urgent global issues; meanwhile, understanding of sorptive/dynamic behavior is crucial to create next-generation encapsulant materials with stable sorbent processes. Herein, we showcase molecular CO<sub>2</sub> storage constructed by a [60]fullerenol nanopocket. The CO<sub>2</sub> density reaches 2.401 g/cm<sup>3</sup> within the nanopore, showing strong intramolecular interactions, which induce nanoconfinement effects such as forbidden translation, restricted rotation, and perturbed vibration of CO<sub>2</sub>. We also disclosed an equation of state for a molecular CO<sub>2</sub> gas, revealing a very low pressure of 3.14 rPa (1 rPa = 10<sup>–27</sup> Pa) generated by the rotation/vibration at 300 K. Curiously enough, the CO<sub>2</sub> capture enabled to modulate an external property of the encapulant material itself, i.e., association of the [60]fullerenol via intercage hydrogen-bonding.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 2","pages":"143–147"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
CO2 evolution is one of the urgent global issues; meanwhile, understanding of sorptive/dynamic behavior is crucial to create next-generation encapsulant materials with stable sorbent processes. Herein, we showcase molecular CO2 storage constructed by a [60]fullerenol nanopocket. The CO2 density reaches 2.401 g/cm3 within the nanopore, showing strong intramolecular interactions, which induce nanoconfinement effects such as forbidden translation, restricted rotation, and perturbed vibration of CO2. We also disclosed an equation of state for a molecular CO2 gas, revealing a very low pressure of 3.14 rPa (1 rPa = 10–27 Pa) generated by the rotation/vibration at 300 K. Curiously enough, the CO2 capture enabled to modulate an external property of the encapulant material itself, i.e., association of the [60]fullerenol via intercage hydrogen-bonding.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis