Comparison between EMG-based and optimisation-based approaches for back-muscle forces and intervertebral efforts

IF 2.6 2区 工程技术 Q2 MECHANICS
Simon Hinnekens, Philippe Mahaudens, Christine Detrembleur, Paul Fisette
{"title":"Comparison between EMG-based and optimisation-based approaches for back-muscle forces and intervertebral efforts","authors":"Simon Hinnekens, Philippe Mahaudens, Christine Detrembleur, Paul Fisette","doi":"10.1007/s11044-023-09963-z","DOIUrl":null,"url":null,"abstract":"<p>In biomechanics, computing muscle forces and joint efforts with mathematical optimisation copes with the muscle-redundancy problem, i.e. an infinity of possible muscle forces for a unique configuration. Achievements have been made to develop cost functions that reflect physiologically more correct muscle strategies and to validate them with experiments. It has also been proposed to use experimental input such as electromyography (EMG) in the model to guide the optimisation computation. In line with that, the present study proposes an EMG-based approach to compute back-muscle forces and the resulting intervertebral efforts in a horizontal static configuration of the trunk. This approach is based on EMG signals of three back muscles, lumbar and thoracic paravertebral muscles and the quadratus lumborum (QL), recorded on 19 healthy male subjects. Results of this approach were compared with those from optimisation computations involving four cost functions, classically used in the literature for the trunk and the spine. Our approach showed that muscle forces and intervertebral efforts were in line with these computed by mathematical optimisation, but muscle forces obtained with our approach were more representative of the measured EMG signals compared to muscle forces computed by optimisation. Indeed, three of the four cost functions completely missed to recruit the QL, while the latter was clearly activated during the experiment. This result highlights that EMG and experimental input should be more considered when using a musculoskeletal model and optimisation tools. Since the EMG-based approach used in this study was based on a pure deterministic distribution of a global equivalent force, future work will focus on involving EMG input in the optimisation process to guide its solution in a more physiological manner.</p>","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multibody System Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11044-023-09963-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In biomechanics, computing muscle forces and joint efforts with mathematical optimisation copes with the muscle-redundancy problem, i.e. an infinity of possible muscle forces for a unique configuration. Achievements have been made to develop cost functions that reflect physiologically more correct muscle strategies and to validate them with experiments. It has also been proposed to use experimental input such as electromyography (EMG) in the model to guide the optimisation computation. In line with that, the present study proposes an EMG-based approach to compute back-muscle forces and the resulting intervertebral efforts in a horizontal static configuration of the trunk. This approach is based on EMG signals of three back muscles, lumbar and thoracic paravertebral muscles and the quadratus lumborum (QL), recorded on 19 healthy male subjects. Results of this approach were compared with those from optimisation computations involving four cost functions, classically used in the literature for the trunk and the spine. Our approach showed that muscle forces and intervertebral efforts were in line with these computed by mathematical optimisation, but muscle forces obtained with our approach were more representative of the measured EMG signals compared to muscle forces computed by optimisation. Indeed, three of the four cost functions completely missed to recruit the QL, while the latter was clearly activated during the experiment. This result highlights that EMG and experimental input should be more considered when using a musculoskeletal model and optimisation tools. Since the EMG-based approach used in this study was based on a pure deterministic distribution of a global equivalent force, future work will focus on involving EMG input in the optimisation process to guide its solution in a more physiological manner.

Abstract Image

基于肌电图的方法与基于优化的方法在背部肌肉力量和椎间力度方面的比较
在生物力学中,通过数学优化计算肌肉力量和合力可以解决肌肉冗余问题,即对于一个独特的构型,可能的肌肉力量无穷大。在开发成本函数以反映生理上更正确的肌肉策略并通过实验进行验证方面,已经取得了一些成果。还有人建议在模型中使用肌电图(EMG)等实验输入来指导优化计算。为此,本研究提出了一种基于肌电图的方法,用于计算躯干水平静态配置下的背部肌肉力和由此产生的椎间肌力。该方法基于 19 名健康男性受试者记录的三块背部肌肉、腰椎旁肌、胸椎旁肌和腰四头肌(QL)的肌电图信号。该方法的结果与文献中经典用于躯干和脊柱的四种成本函数的优化计算结果进行了比较。我们的方法表明,肌肉力量和椎间力度与数学优化计算的结果一致,但与优化计算的肌肉力量相比,我们的方法获得的肌肉力量更能代表测得的肌电信号。事实上,四个成本函数中有三个完全没有招募到 QL,而后者在实验过程中明显被激活。这一结果突出表明,在使用肌肉骨骼模型和优化工具时,应更多地考虑肌电图和实验输入。由于本研究中使用的基于肌电图的方法是基于全局等效力的纯确定性分布,未来的工作将侧重于在优化过程中引入肌电图输入,以更符合生理学的方式指导其解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
17.60%
发文量
46
审稿时长
12 months
期刊介绍: The journal Multibody System Dynamics treats theoretical and computational methods in rigid and flexible multibody systems, their application, and the experimental procedures used to validate the theoretical foundations. The research reported addresses computational and experimental aspects and their application to classical and emerging fields in science and technology. Both development and application aspects of multibody dynamics are relevant, in particular in the fields of control, optimization, real-time simulation, parallel computation, workspace and path planning, reliability, and durability. The journal also publishes articles covering application fields such as vehicle dynamics, aerospace technology, robotics and mechatronics, machine dynamics, crashworthiness, biomechanics, artificial intelligence, and system identification if they involve or contribute to the field of Multibody System Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信