{"title":"Hydrogen sulfide (H2S) metabolism: Unraveling cellular regulation, disease implications, and therapeutic prospects for precision medicine","authors":"Tejasvi Pandey , Vivek Pandey","doi":"10.1016/j.niox.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>Hydrogen sulfide (H</span><sub>2</sub>S), traditionally recognized as a noxious gas with a pungent odor, has emerged as a fascinating metabolite originating from proteinaceous foods. This review provides a comprehensive examination of H<sub>2</sub><span>S regulatory metabolism in cell. Dysregulation of cellular processes plays a pivotal role in the pathogenesis of numerous diseases. Recent development explores the chemistry of biosynthesis and degradation of H</span><sub>2</sub>S in cells. The consequences of dysregulation causing diseases and the emerging role of hydrogen sulfide (H<sub>2</sub><span>S) modulation as a promising therapeutic platform has not been explored much. These disturbances can manifest as oxidative stress<span>, inflammation, and aberrant cellular signaling pathways, contributing to the development and progression of diseases such as cancer, cardiovascular disorders, neurodegenerative diseases, and diabetes. Hydrogen sulfide has gained recognition as a key player in cellular regulation. H</span></span><sub>2</sub><span>S is involved in numerous physiological processes<span>, including vasodilation, inflammation control, and cytoprotection. Recent advances in research have focused on modulating H</span></span><sub>2</sub>S levels to restore cellular balance and mitigate disease progression. This approach involves both exogenous H<sub>2</sub>S donors and inhibitors of H<sub>2</sub><span>S -producing enzymes. By harnessing the versatile properties of H</span><sub>2</sub>S, researchers and clinicians may develop innovative therapies that address the root causes of dysregulation-induced diseases. As our understanding of H<sub>2</sub>S biology deepens, the potential for precision medicine approaches tailored to specific diseases becomes increasingly exciting, holding the promise of improved patient outcomes and a new era in therapeutics.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitric oxide : biology and chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089860324000107","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen sulfide (H2S), traditionally recognized as a noxious gas with a pungent odor, has emerged as a fascinating metabolite originating from proteinaceous foods. This review provides a comprehensive examination of H2S regulatory metabolism in cell. Dysregulation of cellular processes plays a pivotal role in the pathogenesis of numerous diseases. Recent development explores the chemistry of biosynthesis and degradation of H2S in cells. The consequences of dysregulation causing diseases and the emerging role of hydrogen sulfide (H2S) modulation as a promising therapeutic platform has not been explored much. These disturbances can manifest as oxidative stress, inflammation, and aberrant cellular signaling pathways, contributing to the development and progression of diseases such as cancer, cardiovascular disorders, neurodegenerative diseases, and diabetes. Hydrogen sulfide has gained recognition as a key player in cellular regulation. H2S is involved in numerous physiological processes, including vasodilation, inflammation control, and cytoprotection. Recent advances in research have focused on modulating H2S levels to restore cellular balance and mitigate disease progression. This approach involves both exogenous H2S donors and inhibitors of H2S -producing enzymes. By harnessing the versatile properties of H2S, researchers and clinicians may develop innovative therapies that address the root causes of dysregulation-induced diseases. As our understanding of H2S biology deepens, the potential for precision medicine approaches tailored to specific diseases becomes increasingly exciting, holding the promise of improved patient outcomes and a new era in therapeutics.
期刊介绍:
Nitric Oxide includes original research, methodology papers and reviews relating to nitric oxide and other gasotransmitters such as hydrogen sulfide and carbon monoxide. Special emphasis is placed on the biological chemistry, physiology, pharmacology, enzymology and pathological significance of these molecules in human health and disease. The journal also accepts manuscripts relating to plant and microbial studies involving these molecules.